imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

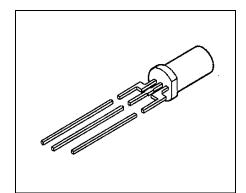
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

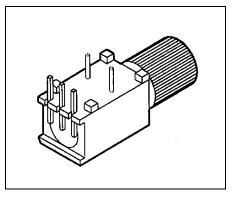
Plastic Fiber Optic Phototransistor Detector Plastic Connector Housing

SFH350 SFH350V

Features

- 2.2 mm Aperture holds Standard 1000 Micron Plastic Fiber
- No Fiber Stripping Required
- Good Linearity
- Sensitive in visible and near IR Range
- Molded Microlens for Efficient Coupling


Plastic Connector Housing


- Mounting Screw Attached to the Connector
- Interference Free Transmission from light-Tight Housing
- Transmitter and Receiver can be flexibly positioned
- No Cross Talk
- Auto insertable and Wave solderable
- Supplied in Tubes

Applications

- Household Electronics
- Power Electronics
- Optical Networks
- Light Barriers

Туре	Ordering Code		
SFH350	Q62702-P1033		
SFH350V	Q62702-P0264		

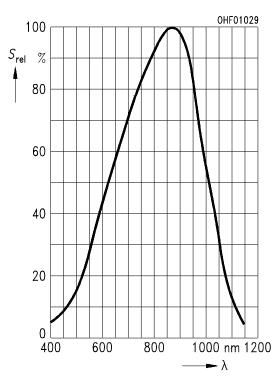
SFH350 SFH350V

Technical Data

Technical Data

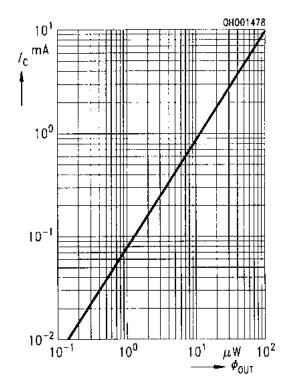
Absolute Maximum Ratings

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Operating Temperature Range	T _{OP}	-40	+85	°C
Storage Temperature Range	T _{STG}	-40	+100	°C
Soldering Temperature (2 mm from case bottom, $t \le 5$ s)	T _S		260	°C
Collector-Emitter Voltage	V _{CE}		50	V
Collector Current	I _C		50	mA
Collector Peak Current ($t \le 10$ s)	I _{CP}		100	mA
Emitter-Bias Voltage	V_{EB}		7	V
Reverse Voltage	V _R		30	V
Power Dissipation $T_A = 25^{\circ}C$	P _{TOT}		200	mW
Thermal Resistance, Junction/Air	R _{thJA}		375	K/W

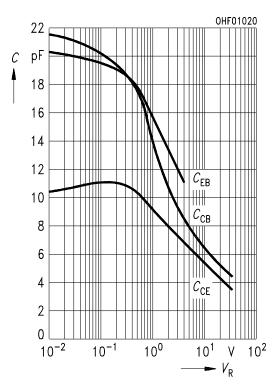

Technical Data

Characteristics ($T_A = 25^{\circ}C$)

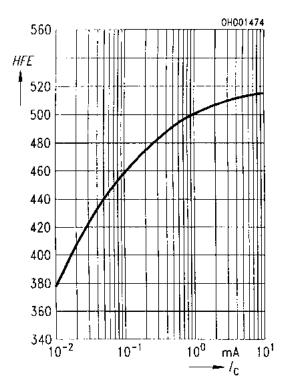
Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Maximum Photosensitivity Wavelength	λ_{Smax}		850		nm
Photosensitivity Spectral Range $(S = 10\% S_{max})$	λ	400		1100	nm
Dark Current ($V_{\rm R}$ = 20 V)	I _R		1 (≤ 10)		nA
Capacitance $(f = 1 \text{ MHz}, \text{ without light})$ $(V_{CE} = 0 \text{ V})$ $(V_{CB} = 0 \text{ V})$ $(V_{EB} = 0 \text{ V})$	C_{CE} C_{CB} C_{EB}		10.5 21.5 20.5		pF
Rise and Fall Times of Photo Current $(R_L = 1 \text{ k}\Omega, V_{CE} = 5 \text{ V}, I_C = 1.0 \text{ mA}, \lambda = 959 \text{ nm})$ 10% to 90% 90% to 10%	t _R t _F		20 20		μs
Current Gain	HFE		500		
Collector Dark Current $(V_{CE} = 5 \text{ V})$	I _{CE0}		2 (≤ 50)		nA
Photo Current ($V_{CE} = 5 \text{ V}$, $\Phi_{IN} = 10 \ \mu\text{W}$ coupled from the end of a plastic fiber, $\lambda = 660 \text{ nm}$)	I _{CE}		0.8 (≥ 0.16)		mA
Temperature Coefficient HFE	TC_{HFE}		0.55		%/K
Temperature Coefficient I_{CE} $\lambda = 560$ to 660 nm	TC ₁		0.34		%/K
Temperature Coefficient I_{CE} λ = 830 nm			0.49		
Temperature Coefficient I_{CE} $\lambda = 950 \text{ nm}$			0.66		



Technical Data

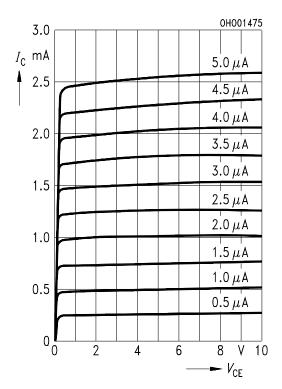


Relative Spectral Sensitivity $S_{rel} = f(\lambda)$

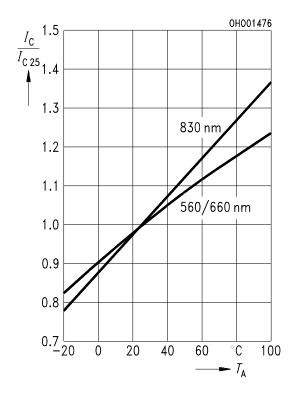

Photocurrent $I_{\rm C}$ = $f(\Phi_{\rm OUT})$, $V_{\rm CE}$ = 5 V, λ = 560...950 nm

Capacitance $C = f(V_R), f = 1$ MHz, $E_V = 0$

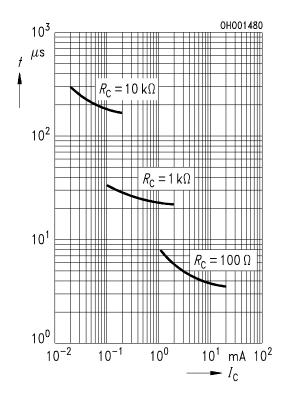
Current Gain $HFE = f(I_C)$, $V_{CE} = 5$ V, $T_A = 25^{\circ}$ C

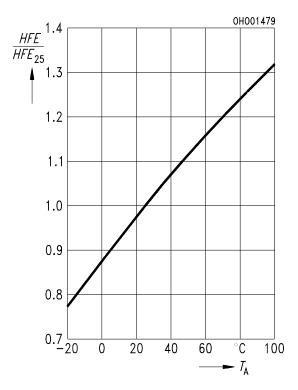


SFH350 SFH350V

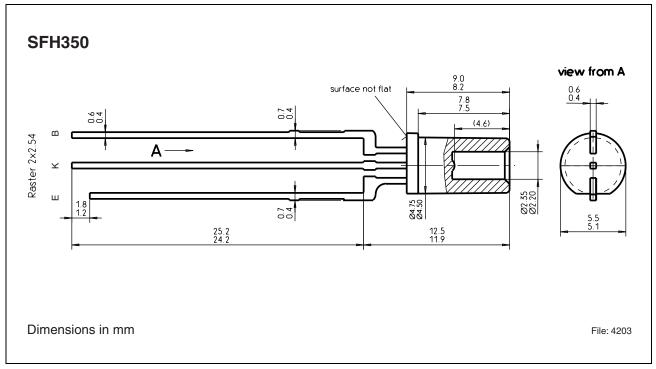

Technical Data

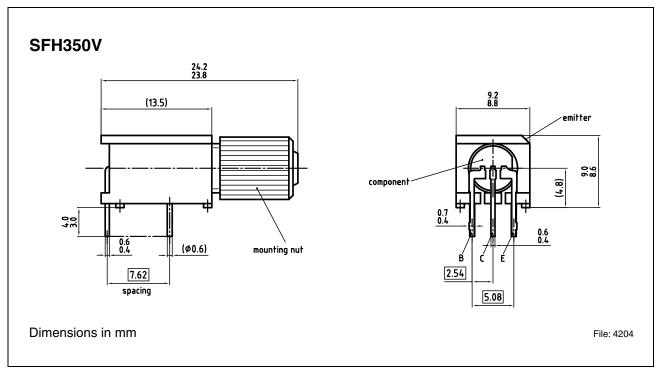
Output Characteristics $I_{\rm C} = f(V_{\rm CE})$,


 $I_{\rm B}$ = parameter


Photocurrent $I_{\rm C}/I_{\rm C25} = f(T_{\rm A})$, $V_{\rm CE} = 5$ V, $\lambda = \text{parameter}$

Response Time $t = f(I_{\rm C}), V_{\rm CC} = 5 \text{ V}, \lambda = 950 \text{ nm}$


Current Gain $HFE/HFE_{25} = f(T_A)$, $V_{CE} = 5 \text{ V}$, $I_C = 1 \text{ mA}$



Package Outlines

Package Outlines

Figure 1

SFH350 SFH350V

Revision History:	2004-03-19	DS1
Previous Version:	2002-03-14	

Edition 2004-03-19 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2004. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.