

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

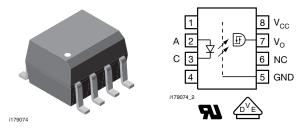
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



High Speed Optocoupler, Single, 5 MBd, in SOIC-8 Package

DESCRIPTION

The single channel 5 Mb/s SFH6720 and SFH6721 high speed optocoupler consists of a GaAlAs infrared emitting diode, optically coupled with an integrated photo detector. The detector incorporates a Schmitt-trigger stage for improved noise immunity. A Faraday shield provides a common mode transient immunity of 1000 V/ μ s at V_{CM} = 50 V for SFH6720 and 2500 V/ μ s at V_{CM} = 400 V for SFH6721.

AGENCY APPROVALS

- UL1577, file no. E52744 system code Y
- DIN EN 60747-5-5 (VDE 0884) available with option 1

FEATURES

- Buffer
- Isolation test voltage, 4000 V_{RMS}
- TTL, LSTTL and CMOS compatible

- Internal shield for very high common mode transient immunity
- Wide supply voltage range (4.5 V to 15 V)
- Low input current (1.6 mA to 5 mA)
- Parameters specified from 0 °C to 85 °C
- T_{amb} from -40 °C to 100 °C
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Industrial control
- Replace pulse transformers
- · Routine logic interfacing
- Motion / power control
- High speed line receiver
- Microprocessor system interfaces
- · Computer peripheral interfaces

ORDERING INFORMATIO	N	
S F H	6 7 2 #	TAPE AND REEL 6.1 mm
AGENCY CERTIFIED/PACKAGE	CMR (kV/μs)	CMR (kV/µs)
UL	1	2.5
SOIC-8	SFH6720T	SFH6721T
VDE, UL	1	2.5
SOIC-8	SFH6720-X001T	-

TRUTH TABLE (positive logic)		
PART	IR DIODE	OUTPUT
SFH6720	On	Н
SFN0720	Off	L
SFH6721	On	Н
31110721	Off	L

ABSOLUTE MAXIMUM RATINGS ⁽¹⁾ (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
INPUT							
Reverse voltage		V _R	3	V			
DC forward current		I _F	10	mA			
Surge forward	t _p ≤ 1 μs, 300 pulses/s	I _{FSM}	1	mA			
Power dissipation		P _{diss}	20	mW			
OUTPUT							
Supply voltage		V _{CC}	-0.5 to +15	V			
Output voltage		Vo	-0.5 to +15	V			
Average output current		I _O	25	mA			
Power dissipation		P _{diss}	100	mW			
COUPLER							
Storage temperature range		T _{stg}	-55 to +125	°C			
Ambient temperature range		T _{amb}	+ 85	°C			
Lead soldering temperature	t = 10 s	T _{sld}	260	°C			

Note

⁽¹⁾ Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

RECOMMENDED OPERA	ATING CONDITIONS (1)					
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage		V _{CC}	4.5		15	V
Forward input current		I _{Fon}	1.6 ⁽²⁾		5	mA
Torward Input current		I _{Foff}			0.1	mA
Operating temperature		T _A	-40		85	°C

Notes

- $^{(1)}\,$ A 0.1 μF bypass capacitor connected between pins 5 and 8 must be used.
- (2) We recommended using a 2.2 mA if to permit at least 20 % CTR degradation guard band.

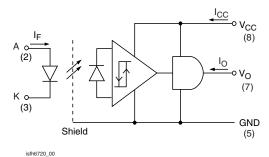
ELECTRICAL CHARACTERISTICS (1)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT						
Forward voltage	I _E = 5 mA, 25 °C	V _F		1.6	1.75	V
r orward voltage	I _F = 5 IIIA, 25 C	V_{F}			1.9	V
Input current hysteresis	$V_{CC} = 5 \text{ V}, I_{HYS} = I_{Fon} - I_{Foff}$	I _{HYS}	0.1			V
Reverse current	V _R = 3 V	I _R		0.5	10	μΑ
Capacitance	V _R = 0 V, f = 1 MHz	Co		60		pF
Thermal resistance		R _{thja}		700		K/W

www.vishay.com

Vishay Semiconductors

ELECTRICAL CHARACT	ERISTICS (1)					
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
OUTPUT						
Logic low output voltage	$I_{OL} = 6.4 \text{ mA}$	V_{OL}			0.5	V
Logic high output voltage	$I_{OH} = -2.6 \text{ mA},$ $V_{OH} = V_{CC} - 1.8 \text{ V}$	V _{OH}	2.4			V
Output leakage current	$V_O = 5.5 \text{ V}, V_{CC} = 4.5 \text{ V},$ $I_F = 5 \text{ mA}$	Іонн		0.5	100	μΑ
(V _{OUT} > V _{CC})	$V_O = 15 \text{ V}, V_{CC} = 4.5 \text{ V},$ $I_F = 5 \text{ mA}$	Іонн		1	500	μΑ
Logic low cumply cumpet	$V_{CC} = 5.5 \text{ V}, I_F = 0$	I _{CCL}		3.7	6	mA
Logic low supply current	$V_{CC} = 15 \text{ V}, I_F = 0$	I _{CCL}		4.1	6.5	mA
Logic high cumply current	$V_{CC} = 5.5 \text{ V}, I_F = 5 \text{ mA}$	I _{CCH}		3.4	4	mA
Logic high supply current	$V_{CC} = 15 \text{ V}, I_F = 5 \text{ mA}$	I _{CCH}		3.7	5	mA
Logic low short circuit output	$V_O = V_{CC} = 5.5 \text{ V}, I_F = 0$	I _{OSL}	25			mA
current (output short circuit time ≤ 10 ms)	$V_O = V_{CC} = 15 \text{ V}, I_F = 0$	I _{OSL}	40			mA
Logic high short circuit output current	$V_{CC} = 5.5 \text{ V}, V_{O} = 0 \text{ V},$ $I_{F} = 5 \text{ mA}$	I _{OSH}			- 10	mA
(output short circuit time \leq 10 ms)	$V_{CC} = 15 \text{ V}, V_{O} = 0 \text{ V}, I_{F} = 5 \text{ mA}$	I _{OSH}			-25	mA
Thermal resistance		R _{thja}		300		K/W
COUPLER						
Capacitance (input to output)	f = 1 MHz, pins 1 to 4 and 5 to 8 shorted together	C _{IO}		0.6		pF

Note


(1) - 40 ° C ≤ T_{amb} ≤ 85 °C; 4.5 V ≤ V_{CC} ≤ 15 V; 1.6 mA ≤ I_{Fon} ≤ 5 mA; 2 ≤ V_{EH} ≤ 15 V; 0 ≤ V_{EL} ≤ 0.8 V; 0 mA ≤ I_{Foff} ≤ 0.1 mA. Typical values: T_{amb} = 25 °C; V_{CC} = 5 V; I_{Fon} = 3 mA unless otherwise specified.

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

SWITCHING CHARACTERISTICS (1)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Propagation delay time to logic	Without peaking capacitor	t _{PHL}		120		ns
low output level	With peaking capacitor	t _{PHL}		115	300	ns
Propagation delay time to logic	Without peaking capacitor	t _{PLH}		125		ns
high output level	With peaking capacitor	t _{PLH}		90	300	ns
Output rise time	10 % to 90 %	t _r		40		ns
Output fall time	90 % to 10 %	t _f		10		ns

Note

(1) 0 °C ≤ T_{amb} ≤ 85 °C; 4.5 V ≤ V_{CC} ≤ 15 V; 1.6 mA ≤ I_{Fon} ≤ 5 mA; 0 mA ≤ I_{Foff} ≤ 0.1 mA Typical values: T_{amb} = 25 °C; V_{CC} = 5 V; I_{Fon} = 3 mA unless otherwise specified. A 0.1 μF bypass capacitor connected between pins 5 and 8 must be used.

COMMON MODE TRANSIENT IMMUNITY (1)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Logic high common mode	$ V_{CM} = 50 \text{ V}, I_F = 1.6 \text{ mA}$	SFH6720	CM _H	1000			V/µs
transient immunity (2)	V _{CM} = 300 V, I _F = 1.6 mA	SFH6721	CM _H	5000			V/µs
Logic low common mode	$ V_{CM} = 50 \text{ V}, I_F = 0 \text{ mA}$	SFH6720	CM _L	1000			V/µs
transient immunity (2)	$ V_{CM} = 1000 \text{ V}, I_F = 0 \text{ mA}$	SFH6721	CM _L	10 000			V/µs

Note

⁽²⁾ CM_H is the maximum slew rate of a common mode voltage V_{CM} at which the output voltage remains at logic high level ($V_O > 2$ V). CM_L is the maximum slew rate of a common mode voltage V_{CM} at which the output voltage remains at logic low level ($V_O < 0.8$ V).

PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Climatic classification	According to IEC 68 part 1		55/100/21	
Pollution degree	According to DIN VDE 0109		2	
Comparative tracking index	Insulation group IIIa	CTI	175	
Maximum rated withstanding isolation voltage	According to UL1577, t = 1 min	V _{ISO}	3333	V _{RMS}
Tested withstanding isolation voltage	According to UL1577, t = 1 s	V _{ISO}	4000	V_{RMS}
Maximum transient isolation voltage	According to DIN EN 60747-5-5	V _{IOTM}	6000	V _{peak}
Maximum repetitive peak isolation voltage	According to DIN EN 60747-5-5	V _{IORM}	560	V _{peak}
Isolation resistance	V_{IO} = 500 V, T_{amb} = 25 °C	R _{IO}	≥ 10 ¹²	Ω
Isolation resistance	V _{IO} = 500 V, T _{amb} = 100 °C	R _{IO}	≥ 10 ¹¹	Ω
Output safety power		P _{SO}	350	mW
Input safety current		I _{SI}	150	mA
Input safety temperature		T _S	165	°C
Creepage distance	SOIC-8		≥ 4	mm
Clearance distance	SOIC-8		≥ 4	mm
Insulation thickness		DTI	≥ 0.2	mm

Note

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

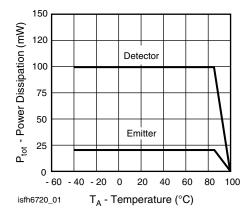


Fig. 1 - Permissible Total Power Dissipation vs. Temperature

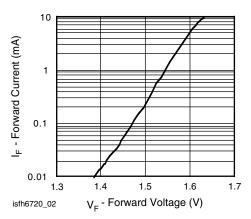


Fig. 2 - Typical Input Diode Forward Current vs. Forward Voltage

 $^{^{(1)}~}T_{amb}$ = 25 °C, V_{CC} = 5 V. $^{(2)}$

As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with
the safety ratings shall be ensured by means of protective circuits.

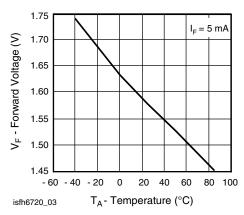


Fig. 3 - Typical Forward Input Voltage vs. Temperature

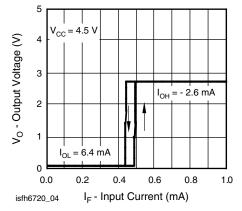


Fig. 4 - Typical Output Voltage vs. Forward Input Current

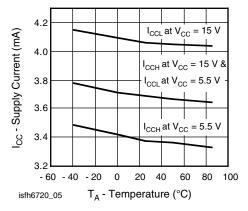


Fig. 5 - Typical Supply Current vs. Temperature

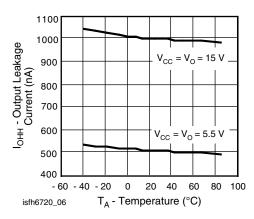


Fig. 6 - Typical Output Leakage Current vs. Temperature

Fig. 7 - Typical Low Level Output Current vs. Temperature

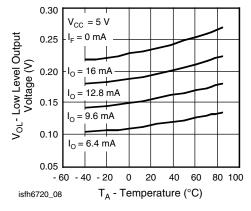


Fig. 8 - Typical Low Level Output Voltage vs. Temperature

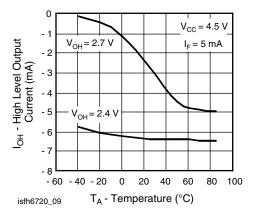


Fig. 9 - Typical High Level Output Current vs. Temperature

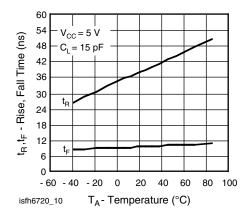


Fig. 10 - Rise and Fall Time vs. Ambient Temperature

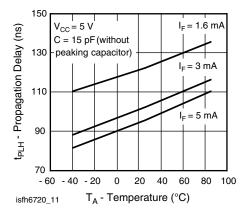


Fig. 11 - Typical Propagation Delays to Logic High vs. Temperature

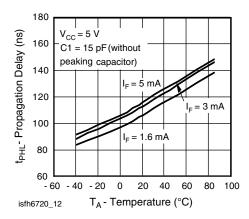


Fig. 12 - Typical Propagation Delays to Logic Low vs. Temperature

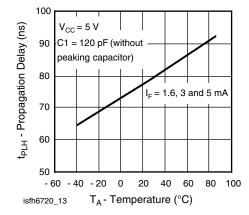


Fig. 13 - Typical Propagation Delays to Logic High vs. Temperature

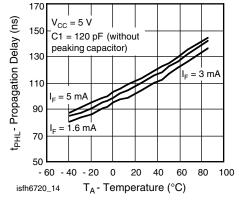


Fig. 14 - Typical Propagation Delays to Logic Low vs. Temperature

For technical questions, contact: optocoupleranswers@vishay

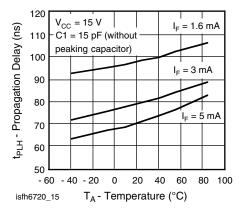


Fig. 15 - Typical Propagation Delays to Logic High vs. Temperature

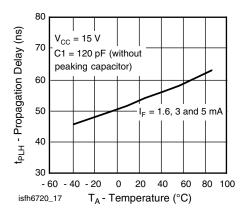


Fig. 17 - Typical Propagation Delays to Logic High vs. Temperature

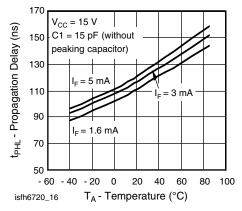


Fig. 16 - Typical Propagation Delays to Logic Low vs. Temperature

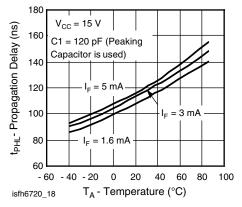


Fig. 18 - Typical Propagation Delays to Logic Low vs. Temperature

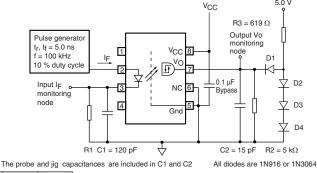


Fig. 19 - Test Circuit for t_{PLH}, t_{PHL}, t_R and t_f

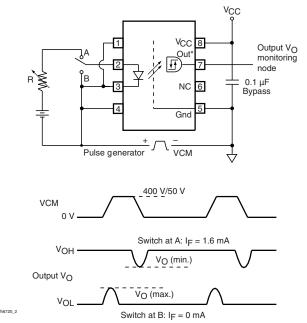
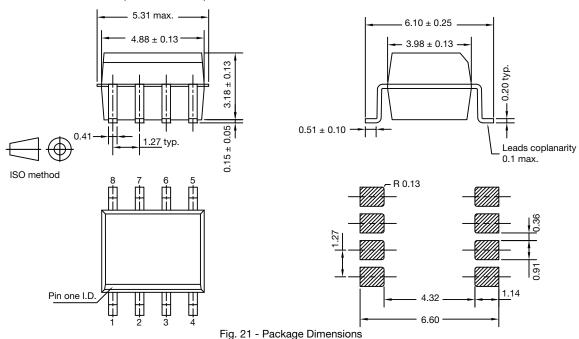
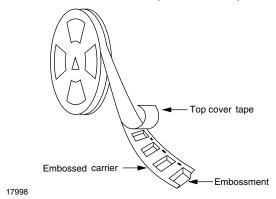



Fig. 20 - Test Circuit for Common Mode Transient Immunity and Typical Waveforms

PACKAGE DIMENSIONS (in millimeters)

PACKAGE MARKING

Fig. 22 - SFH6720


Fig. 23 - SFH6721

Note

• Tape and reel suffix (T) is not part of the package marking.

PACKAGE INFORMATION (in millimeters)

ESD sticker

Tape slot in core

Regular, special or bar code label

Fig. 24 - Tape and Reel Shipping Medium

Fig. 25 - Tape and Reel Shipping Medium

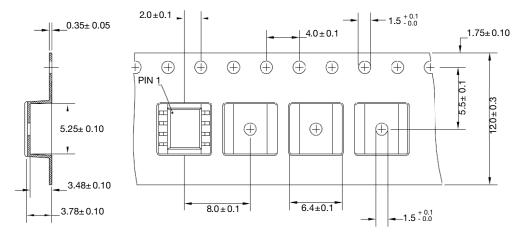


Fig. 26 - Tape and Reel Packing for SOIC (2000 pieces on reel)

SOLDER PROFILES

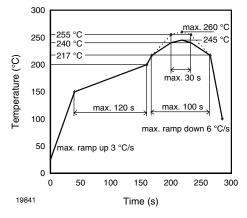


Fig. 27 - Lead (Pb)-free Reflow Solder Profile According to J-STD-020 for SMD Devices

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2

Floor life: unlimited

Conditions: T_{amb} < 30 °C, RH < 85 %

Moisture sensitivity level 1, according to J-STD-020

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000