: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Panasonic

Safety Devices

New Products Line Up

Introducing a range of new safety devices!

Panasonic Industrial Devices SUNX offers comprehensive safety solutions through an extensive selection of safety devices and a robust support system.

SAFETY SOLUTION

NEW Pushbutton type
 Emergency stop switch

SG-E1
© P.16~

NEW

Enable grip switch
SG-C1
© R.14~

NEW
Safety door switch with key / Key selector switch
SG-B2 / SG-D1 Opr8~/R12~

Safety door switch with solenoid interlock

SG-B1 Uurasim

SERIES

(ㄴ) $)(\epsilon)$

Safety door switch
SG-A1 uluasim
SERIES

. © C $C \in$

Connectable safety relay units

SF-AC Supports up to control category 3
-2NC inputs, safety output $\times 3$

Introducing a safety door switch with solenoid interlock that is among the world's thinnest*!
With 5 built-in contacts Based on research oonducted by our company as of March 2013.

Manual lock release can be operated from three directions.

Space saving design with angled connection cable

All models come with cables pre-installed.

The SG-B1 series and SG-A1 series ship with bundled cables already connected internally. Since there is no need to provide cables separately, and because they are already connected internally, the number of wiring man-hours is cut in half.

Can be installed on any door.

Sliding doors

Hinged doors

SG-B1 series

(with solenoid interlock)

SG-A1 series

Mounting hole layout (Unit: mm in)

SG-B1 series

(with solenoid interlock)

SG-A1 series

Common actuators

SG-B1 series

(with solenoid interlock)

SG-A1 series
 ?

Horizontal / Vertical angle adjustable actuators

SG-K13

SG-K14

| SG-B1 series | Features | Order guide | Contact configuration / Operating patterns | Specifications | Precautions for proper use | Dimensions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SG-A1 series | P.4~ | P. 7 | P. 18 | P. 19 | P.20~ | P.22~ |

Order guide

Safety door switch with solenoid interlock
Actuators are not included with door switches and must be purchased separately.

Type	Interlock force	Main contacts	Door monitor contacts	Lock monitor contacts	Cable length	Model No.
Spring lock type	500 N or more	$1 N C+1 N C$	2NC		1 m 3.281 ft	SG-B1-SA-G1
				C	5 m 16.404 ft	SG-B1-SA-G5
					1 m 3.281 ft	SG-B1-SB-G1
					5 m 16.404 ft	SG-B1-SB-G5
Magnet lock type				1NC	1 m 3.281 ft	SG-B1-MA-G1
					5 m 16.404 ft	SG-B1-MA-G5
				1NO	1 m 3.281 ft	SG-B1-MB-G1
					5 m 16.404 ft	SG-B1-MB-G5

Safety door switch

Actuators are not included with door switches and must be purchased separately.

Door monitor contacts	Cable length	Model No.
2 NC	$1 \mathrm{~m} \mathrm{3.281} \mathrm{ft}$	SG-A1-02-1
	5 m 16.404 ft	SG-A1-02-5
$2 \mathrm{NC}+\mathbf{1 N O}$	$1 \mathrm{~m} \mathrm{3.281} \mathrm{ft}$	SG-A1-12-1
	5 m 16.404 ft	SG-A1-12-5
3 NC	1 m 3.281 ft	SG-A1-03-1
	5 m 16.404 ft	SG-A1-03-5

Actuators
Actuators are not included with door switches and must be purchased separately.

Type	Model No.
Straight actuator	SG-K11
Right-angle actuator	SG-K12 (Note 1)
Right-angle actuator (with plate)	SG-K12A
Horizontal / vertical angle adjustable actuators (Note 2)	SG-K13
	SG-K14

- SG-K11

- SG-K13

- SG-K14

2) Choose a model after verifying the required direction of operation based on the relationship between the door and safety switch. (Refer to p.21)
The right-angle SG-K12 actuator's tensile strength is 100 N . Using the device with a load in excess of this value may cause it to fall off the door. If you anticipate that the tensile load during use will exceed 100 N , use the right-angle (with plate) SG-K12A

Safety door switch with key
SG-B2
SERIES

Connectable safety relay units

SF-AC Supports up to control category 3 - 2 NC inputs, safety output $\times 3$

\square Order guide	P. 10
Options	P. 11
Contact configuration /	P. 25
Operating patterns	
Specifications	P. 26
Precautions for proper use	P.26~
Dimensions	P.28~

Solve issues related to machine safety and other safety measures with a safety door switch with key!

The safety door switch with key SG-B2 series locks and unlocks doors with keys. When an operator takes a key into a hazardous area, the safety door switch will not lock, and the equipment will stop, ensuring operator safety by preventing personnel from being closed inside the hazardous area and preventing equipment from starting to operate.

Additionally, the key selector switch SG-D1 series can be used to switch equipment modes and unlock door locks with a single key.

Hazards of the system and robot are isolated by the safety guard. When a worker needs to work inside the hazardous area for maintenance, the worker unlocks the safety guard using a key, disables the system from starting (1), removes the key and brings it into the hazardous area, and then changes the operation mode of each system to maintenance mode (2). While the worker is carrying out maintenance work in the hazardous area, the safety guard cannot be locked and the system cannot be turned on. This enables the worker to work safely in the hazardous area.

Energy-saving design, no power supply required

Since doors are locked and unlocked with a key, there is no need to supply power to the safety door switch.

Head removal detection function

Head removal detection function is employed in the SG-B2. With this innovative function, the monitor circuit (41-42) turns off when the head is removed from the switch, such as when removing the head to change the head direction.

With the head installed on the switch, monitor circuits 41-42 and 51-52 operate in synchronization while the key locks / unlocks the actuator. When the head is removed, 41-42 turns off and 51-52 turns on.
This disagreement is detected by the head removal detection function.

Monitor circuit	Actuator unlocked	Actuator locked	When the head removed
LOCK			
Monitor circuit (NC) Pink $\Theta 41$	UNLock	42 Pink / White	OFF
Monitor circuit $(N C)$ Brown $\Theta 51$	52 Brown / White	OFF	ON

Note: Head removal detection function is not direct opening.

High-security pin tumbler key types are used

All models come with cables pre-installed.

Double-insulated design eliminates the need for grounding wires.

Choose an actuator based on the door shape and application.

Available with rear unlocking button

Models with a rear unlocking button allow the door to be unlocked from the inside in the event a worker is left in the hazardous area.

Equipment combination examples related to machine safety

Order guide

Safety door switch with key
Actuators are not included with door switches and must be purchased separately.

Note: The contact configuration shows the status when the actuator is inserted and the switch is locked Key LOCK and UNLOCK positions are as shown on the right.

Switches incorporate two detents so that they stop in each position.

Actuators

Actuators are not included with door switches and must be purchased separately.

Type	Description	Model No.
Straight actuator	The actuator tensile strength when using this product is $1,400 \mathrm{~N}$.	SG-K21
Straight actuator with rubber bushings		SG-K21A
Slide actuator		SG-K21S
Right-angle actuator		SG-K22
Right-angle actuator with rubber bushings		SG-K22A
Horizontal / vertical angle adjustable actuators	The actuator tensile strength when using this product is 500 N .	SG-K24

Note: When using a safety door switch with key on a hinged door, see page 27 for more information about the minimum door radius with which the switch can be used
-SG-K21 •SG-K21A •SG-K21S •SG-K22 •SG-K22A

	Features	Order guide	Options	Contact configuration / Operating patterns	Specifications	Precautions for proper use	Dimensions
SG-B2 series	P.8~	P. 10	P. 11	P. 25	P. 26	P.26~	P.28~

Options

Type	Model No.
Padlock hasp (Note 1)	SG-PH2
Mounting plate (for mounting on an aluminum frame)	MS-SG-21
Rear unlocking button kit for a frame (Note 2)	MS-SG-22
	MS-SG-23

Notes: 1) The shackle diameter for compliant padlocks ranges from $\varnothing 5.5$ to $\varnothing 7.5 \mathrm{~mm}$ $\varnothing 0.217$ to $\varnothing 0.295$ in.

2) For more information about selecting a back manual unlock button kit for a frame, see the following table:

Model No.	Mounting part* thickness (X) (mm in)
	Rear unlocking button type When installing an SG-B2-K2םD-L5 with a rear unlocking button directly
MS-SG-22	$33<X \leq 431.299<X \leq 1.693$
MS-SG-23	$23<X \leq 33 \quad 0.906<X \leq 1.299$

* The mounting part is a frame or a panel that the product is mounted on.

Padlock hasp

-SG-PH2

- MS-SG-21

Rear unlocking button kit for a frame

- MS-SG-22
- MS-SG-23

SERIES

(1) ((6) $\triangle C \in \Theta$

Key selector switch with direct open operation function
Pin tumbler design for high security

Use in combination with the safety door switch with key SG-B2 series to enable hostage control.

Hazards of the system and robot are isolated by the safety guard. When a worker needs to work inside the hazardous area for maintenance, the worker unlocks the safety guard using a key, disables the system from starting (1), removes the key and brings it into the hazardous area, and then changes the operation mode of each system to maintenance mode (2). While the worker is carrying out maintenance work in the hazardous area, the safety guard cannot be locked and the system cannot be turned on. This enables the worker to work safely in the hazardous area.

Order guide

Key selector switch

Position	Contact configuration	Contact block		Operator position		Model No.	Key removal position
		Mounting position (Note)	Contact	1	2		
Maintained	1NO / 1NC (11)	(1)	NO		\bullet	SG-D1-2A11	A: All positions
		(2)	NC	\bullet			
	$\underset{(22)}{2 \mathrm{NO} / 2 \mathrm{NC}}$	(1)	NO		\bullet	SG-D1-2A22	
		(2)	NC	\bullet			
		(3)	NO		\bullet		
		(4)	NC	\bullet			
	1NO / 1NC (11)	(1)	NO		-	SG-D1-2B11	B: Left position $\binom{$ Not removable in }{ right position }
 (Manual) 90 degree, 2-position		(2)	NC	\bullet			
	$\underset{(22)}{2 \mathrm{NO} / 2 \mathrm{NC}}$	(1)	NO		\bullet	SG-D1-2B22	
		(2)	NC	\bullet			
		(3)	NO		\bullet		
		(4)	NC	\bullet			
	1NO / 1NC (11)	(1)	NO		\bullet	SG-D1-2C11	C: Right position $\binom{$ Not removable in }{ left position }
		(2)	NC	\bullet			
	$\underset{(22)}{2 \mathrm{NO} / 2 \mathrm{NC}}$	(1)	NO		\bullet	SG-D1-2C22	
		(2)	NC	\bullet			1
		(3)	NO		\bullet		
		(4)	NC	\bullet			

Note: Contact blocks are attached as shown below:

Options

Type	Model No.	Description
Locking ring wrench	SG-ET1	Used to tighten the locking ring when installing the unit onto a panel. Material: Brass Weight: approx. 150 g *Tighten the locking ring to a torque of $2.0 \mathrm{~N} \cdot \mathrm{~m}$.

Locking ring wrench

- SG-ET1

Enable grip switch

SG-C1

SERIES

(1) $\left(\in \mathrm{C} \boldsymbol{1}_{\mathrm{us}} \Theta \square\right.$

 (Push monitor swich)

Order guide	P. 15
Contact configuration /	P. 15
Operating patterns	
Specifications	P. 31
Precautions for proper use	P. $31 \sim$
Dimensions	P. 32

Compact, light weight grip switches designed to fit comfortably in the hand

This product line includes models with control units suited to a variety of applications.

The compact, light weight grip profile was designed based on human engineering considerations.
The compact profile fits the hand perfectly, ensuring comfortable operation. Thanks to its light weight design (SG-C1-21: approx. 140 g) and compact size, it is easy to hold even for individuals with small hands, and it can also be used in confined work locations.

Reduced impact during extended operation

We reduced the impact during extended operation by lowering the holding load in position 2 (ON).

Pleasant, clear button operation

Tactile clicking feedback allows easy recognition of switch operation when shifting from position 1 (contact OFF) to position 2 (contact ON).

Order guide

Enable grip switch

Contact configuration						Rubber boot material / Color	Wiring style	Model No.
3 position enabling switch	Push monitor switch		Additional	control units				
		Emergency stop switch	Control unit (A)	Control unit (B)	Indicator (green) (C)			
2 contacts	With (1NC)	Without				Silicone rubber / (Yellow) (Note)	Solder terminal	SG-C1-21
		With (2NC)	Without		Without			SG-C1-21-E
					With			SG-C1-21-EG
		Without	Momentary pushbutton Momentary switch pushbutton switch $(2 \mathrm{c})$		Without			SG-C1-21-MM
		With (2NC)			SG-C1-21-EMM			
				Key selector swich (2c)				SG-C1-21-EMK

Additional control unit layout

Note: Silicone rubber: Can be used in general factories. Remains flexible in cold temperatures. Suitable in applications with a wide operating temperature range.

Contact configuration / Operating patterns

Grip switch (during operation of center of the rubber boot)

Key selector switch

Operator position \& contact operation (top view)					
Position	Key removal position	k (Left)		\triangle (Right)	
	Removable in all positions	Left contact	Right contact	Left contact	Right contact

Indicator

Pay attention to the polarity of the power supply as SG-C1-21-EG do not contain a diode for protection against reverse polarity. On solder terminal units, the terminal with a white paint marking is positive.

Emergency stop switch $S G=E 1$ Pushbutton type SERIES

(ㄴ) (el) $\triangle C \in \Theta$

SEMI emergency off (EMO) switch Pushbutton type

(11) (1) $\triangle C \in \Theta$

\square Order guide	P .17
\square Options	P .17
\square Specifications	P .33
\square Precautions for proper use	P .33
\square Dimensions	P .34

Push to lock, turn to reset

Switches feature simple operation: Push the pushbutton to lock the switch, and turn the switch in the direction shown by the arrow to reset it.

Push to lock

Turn to reset

The product line includes a SEMI emergency off (EMO) switch.

SEMI semiconductor industry safety standards

SEMI standards comprise a series of guidelines put together by an industry group consisting of manufacturers of semiconductor manufacturing equipment, flat-panel displays, and associated materials. In the semiconductor industry, this guidelines have achieved the status of de facto international standards.

Section 12.1 of the SEMI standards (S2 0706) states, "Equipment should incorporate an emergency off (EMO) circuit. When the EMO actuator (button) is triggered, the equipment should transition to a safe state in which no new hazard is posed to workers or equipment." This provision likely stems from the need to address the possibility of secondary hazards that could occur when processing power and other inputs are stopped, reflecting the industry's extensive use of materials such as solvents and chemicals, many of which contain hazardous or toxic substances. Consequently, SEMI standards require that normal emergency stop switches, which shut off the supply of energy, including power, be augmented with separate emergency off switches that shut off only the portion of the load that created the hazardous state while maintaining operation of other safety-related equipment (smoke detectors, gas / water leak detectors, pressure measurement equipment, etc.).

When there is the possibility that the emergency off switch could be operated mistakenly, a guard must be installed and the switch must use direct opening operation. The button must be red with a yellow background, and the switch itself must include the letters "EMO."

- When installing a SEMI emergency off (EMO) switch on semiconductor manufacturing equipment, it should be installed at a height of 838 to $1,638 \mathrm{~mm} 32.992$ to 64.488 in .
(SEMI S8-0705)
- According to SEMI standards, the EMO emergency stop switch must be installed within 3 m 9.843 ft of the work location.
(SEMI S2-0706 12.5.2)

Order guide

Emergency stop switch

Type	Contact configuration	Button color	Model No.
Pushlock Turn reset	$2 N C$		SG-E1-02
	Red		SG-E1-12

SEMI emergency off (EMO) switch

Type	Main contacts (NC contacts)	Monitor contacts (NO contacts)	Button color $/$ text color	Model No.
Pushlock Turn reset	$2 N C$	-		SG-E1-02-E
	2NC	Red / White	SNO	
			SG-E1-12-E	

Options

Type	Model No.		Description	

Emergency stop nameplate

Locking ring wrench

- SG-ET1

SEMI guard ring

- MS-SG-GR1

Safety door switch with solenoid interlock

Contact configuration / Operating patterns

$\underline{\text { Safety door switch with solenoid interlock }}$

Unlocking using

Door status

Main circuit: Connected to the machine drive control circuit, sending the interlock signals of the protective door.
Monitor circuit: Sends the monitoring signals of open / closed and lock / unlocked statuses of the protective door.
Notes: 1) Do not attempt manual unlocking while the solenoid is energized.
2) Do not energize the solenoid for a long period of time while the door is open or while the door is unlocked manually.

```
- Operation characteristics \(\square\) : Contact ON (closed) \(\square\) : Contact OFF (opened)
    (reference) \(\quad 0\) (Actuator mounting reference position)
        SG-B1-SA-■
        SG-B1-MA-ם
        Main circuit (11-42)
        Door monitor circuit (21-22)
        Door monitor circuit (31-32)
        Lock monitor circuit (51-52)
                            Approx. 1.1 0.043 (Lock)
                            Approx. 1.10 .043 (Lock)
\(\left\lvert\, \begin{aligned} & \text { Approx. } 4.70 .185 \\ & \text { Approx. } 5.00 .197\end{aligned}\right.\) Approx. 27.41 .079
```


SG-B1-SB-■ 0 (Actuator mounting reference position) SG-B1-MB-■ Approx. 1.10 .043 (Lock)
Approx. 1.10 .043 (Lock)

Approxi 4.7 .0185
Approx. 5.00 .197

Main circuit (11-42) Door monitor circuit (21-22) Door monitor circuit (31-32) Lock monitor circuit (53-54) (Actuator completely inserted) (Actuator pulled out)

- The operation characteristics show the contact status when the actuator enters an entry slot of an safety switch.
- The operation characteristics shown in the chart above are of the SG-K11 / SG-K12 / SG-K13 and SG-K14 actuators. For the SG-K12A actuator, subtract 0.6 mm 0.024 in .

Safety door switch

Specifications

Notes: 1) Basic insulation of $2.5 \mathrm{kV}, 1.5 \mathrm{kV}$ impulse withstand voltage is ensured between different contact circuits and between contact circuits and LED or solenoid in the enclosure. When both SELV (safety extra low voltage) or PELV (protective extra low voltage) circuits and other circuits (such as 230 V AC circuits) are used for the solenoid power and contact circuits at the same time, the SELV or PELV requirements are not met any more.
2) The actuator locking strength is rated at 500 N of static load. Do not apply a load higher than the rated value.
Do not apply a load higher than the rated value.
When a higher load is expected to work on the actuator, provide an additional system consisting of another safety switch without lock (such as the SG-A1 safety switch) or a sensor to detect door opening and stop the machine.

Designation	Safety door switch				
Item Series	SG-A1 series				
Applicable standards	EN 1088, IEC 60947-5-1, EN 60947-5-1, GS-ET-15, UL 508, CSA C22. 2 No. 14				
Standards for use	IEC 60204-1, EN 60204-1				
Applicable directives	Machinery directive (2006/42/EC) Low voltage directive (2006/95/EC)				
읗 Ambient 응 temperature	-25 to $+70^{\circ} \mathrm{C}-13$ to $+158^{\circ} \mathrm{F}$ (No dew condensation or icing allowed) Storage: -40 to $+80^{\circ} \mathrm{C}-40$ to $+176^{\circ} \mathrm{F}$				
Ambient humidity	45 to 85 \% RH				
Pollution degree	3 (Inside 2)				
잉 Altitude	$2,000 \mathrm{~m} 6,561.68 \mathrm{ft} \mathrm{max}$.				
Impulse withstand voltage (Uimp)	4 kV				
Rated insulation voltage (Ui)	300 V				
Thermal current (lth)	2.5 A				
Rated operational voltage (Ue) / Rated operational current (le)	le	Ue	30 V	125 V	250 V
			-	2.5 A	1.5 A
			-	1.5 A	0.75A
			2.5 A	1.1 A	0.55A
			2.3 A	0.55 A	0.27 A
Electric shock protection class	Class II (IEC 61140), 回 (double insulated)				
Protection	IP 67 (IEC 60529)				
Shock resistance	Malfunction: $300 \mathrm{~m} / \mathrm{s}^{2}$ Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$				
Vibration resistance	Malfunction: 5 to 55 Hz , half amplitude 0.5 mm 0.020 in Destruction: 30 Hz , half amplitude 1.5 mm 0.059 in				
Operating frequency	1,200 operations/hour				
Actuator operating speed	0.05 to $1.0 \mathrm{~m} / \mathrm{sec}$.				
$\mathrm{B}_{10 \mathrm{~d}}$	$\begin{gathered} \text { 2,000,000 } \\ \text { (ISO 13849-1 Annex C Table C.1) } \end{gathered}$				
Mechanical durability	1,000,000 operations min. (GS-ET-15)				
Electrical durability	100,000 operations min. (AC-12, 250 V 1.5 A DC-12 250 V 0.2 A) 1,000,000 operations min. (AC/DC 24 V 100 mA) (1,200 operations/hour)				
Direct opening travel	8 mm 0.315 in min .				
Direct opening force	60 N min .				
Contact resistance	$300 \mathrm{~m} \Omega$ max. (initial value, 1 m 3.281 ft cable) $700 \mathrm{~m} \Omega$ max. (initial value, 5 m 16.404 ft cable)				
Short-circuit protective device	Use $250 \mathrm{~V} / 10 \mathrm{~A}$ fast acting type fuse				
Conditional short-circuit current	50 A (250 V)				
Material	Enclosure: PA66				
Cable	UL style 2464, No. 20 AWG 6-core				
Weight	SG-A1-ם-1: Approx. 120 g, SG-A1-a-5: Approx. 420 g				

Precautions for proper use

- This catalog is a guide to select a suitable product. Be sure to read the instruction manual attached to the product prior to its use
- In order to avoid electric shock or fire, turn the power off before installation, removal, wire connection, maintenance, or inspection of the safety switch.
- If relays are used in the circuit between the safety switch and the load, consider the danger and use safety relays, since welding or sticking contacts of standard relays may invalidate the functions of the safety switch.
- Do not place a PLC in the circuit between the safety switch and the load. Safety and security can be endangered in the event of a malfunction of the PLC.
- Do not disassemble or modify the safety switch, otherwise a breakdown or an accident may occur.
- Do not install the actuator in a location where the human body may come in contact. Otherwise injury may occur.
- Magnet lock type is locked when energized, and unlocked when de-energized. When energization is interrupted due to wire disconnection or other failures, the safety switch may be unlocked causing possible danger to the operators. Magnet lock type must not be used in applications where locking is strictly required for safety. Perform a risk assessment and determine whether solenoid lock type is appropriate.

Both series

- Regardless of door types, do not use the safety switch as a door stop. Install a mechanical door stop at the end of the door to protect the safety switch against excessive force.
- Do not apply external force on the actuator while unlocking, otherwise the actuator may not be unlocked.
- Do not apply excessive shock to the safety switch when opening or closing the door. A shock to the safety switch exceeding $1,000 \mathrm{~m} / \mathrm{s}^{2}$ may cause damage to the safety switch.
- If the operating atmosphere is contaminated, use a protective cover to prevent the entry of foreign objects into the safety switch through the actuator entry slots. Entry of a considerable amount of foreign objects into the safety switch may affect the mechanism of the safety switch and cause a malfunction.
- Do not store the safety switches in a dusty, humid, or organic-gas atmosphere, or in an area subjected to direct sunlight.
- Use proprietary actuators only. When other actuators are used, the safety switch may be damaged.

SG-B1 series

- The locking strength is rated at 500 N. Do not apply a load higher than the rated value. When a higher load is expected, provide an additional system consisting of another safety switch without lock (such as the SG-A1 safety switch) or a sensor to detect door opening and stop the machine.
- Regardless of door types, do not use the safety switch as a door lock. Install a separate lock using a latch or other measures.
- While the solenoid is energized, the switch temperature rises approximately $35^{\circ} \mathrm{C} 95^{\circ} \mathrm{F}$ above the ambient temperature (to approximately $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ while the ambient temperature is $50^{\circ} \mathrm{C}$ $122^{\circ} \mathrm{F}$). Do not touch to prevent burns. If cables come into contact with the switch, use heat-resistant cables.
- Bouncing will occur on the lock monitor contact during locking and unlocking (reference value: 20 ms).
- Although the SG-K11 / SG-K12 / SG-K12A actuators alleviate shock when the actuator enters a slot in the safety switch, make sure that excessive shock is not applied. If the rubber bushings become deformed or cracked, replace with new ones.

SG-A1 series

- Cover the unused actuator entry slot using the slot plug supplied with the safety switch.

Minimum radius of hinged door

- When using the safety switch on hinged doors, refer to the minimum radius of doors shown below. When using on doors with small minimum radius, use the angle adjustable actuator (SG-K13 / SG-K14).
Note: The values indicated in the figures below assume that there is no mechanical interference between the actuator and the safety switch when the door is opened or closed. Because deviation or dislocation of hinged doors may occur in actual applications, make sure of the correct operation before installation.

When using the right-angle actuator (SG-K12 / SG-K12A)

SG-B1 series

<When the door hinge is on the extension line of the actuator mounting surface>

<When the door hinge is on the extension line of the safety switch surface>

SG-A1 series

<When the door hinge is on the extension line of the actuator mounting surface>

<When the door hinge is on the extension line of the safety switch surface>

Precautions for proper use

When using the (SG-K13 / SG-K14) angle adjustable (vertical / horizontal) actuator

- When the door hinge is on the extension line of the actuator mounting surface: 70 mm 2.756 in
- When the door hinge is on the extension line of the safety switch surface: 50 mm 1.969 in

SG-B1 series

SG-A1 series

<When the door hinge is on the extension line of the actuator mounting surface>

<When the door hinge is on the extension line of the safety switch surface>

Actuator angle adjustment (vertical / horizontal)

- Using the angle adjustment screw (M3 hexagon-socket-head screw), the actuator angle can be adjusted. (refer to the dimensions on page 24)
Adjustable angle: 0 to 20°
- The larger the adjusted angle of the actuator, the smaller the applicable radius of the door opening. After installing the actuator, open the door. Then adjust the actuator so that its edge can be inserted properly into the actuator entry slot of the safety switch.
- After adjusting the actuator angle, apply Loctite to the adjustment screw so that the screw will not move.

Mounting

- Mount the safety switch on a fixed piece of machinery or guard and the actuator on a hinged door. Avoid mounting both the safety switch and actuator on a hinged door. Doing so may cause equipment failure. For more information about how to mount the devices, see the following diagram:

Note: When mounting the actuator, make sure that the actuator $\square \square$ enters the slot in the correct direction, as shown on the right figure.

Recommended tightening torque for mounting screws Safety switch: 1.0 to $1.5 \mathrm{~N} \cdot \mathrm{~m}$ (Three M4 screws)* Actuator: 1.0 to $1.5 \mathrm{~N} \cdot \mathrm{~m}$ (Two M4 screws)*
*The above recommended tightening torques of the mounting screws are the values confirmed with hexagon-socket-head bolts. When other screws are used and tightened to a smaller torque, make sure that the screws do not become loose after mounting.

- Mounting bolts must be provided by the users.
- To avoid unauthorized or unintended removal of the safety switch and the actuator, it is recommended that the safety switch and actuator are installed in a secure manner, for example using special screws or welding the screws.
- When installing the SG-K12A actuator, use the mounting plate (supplied with the actuator) on the hinged door, and mount tightly using two M4 screws.
The mounting plate has orientation. Do not lose the mounting plate. Adequate performance cannot be obtained without the plate as the actuator may fall off the door.

Cables

- Do not fasten or loosen the gland at the bottom of the safety switch.
- When bending the cable during wiring, make sure that the cable radius is kept at 30 mm 1.181 in minimum.
- When wiring, make sure that water or oil does not enter the cable.
- The solenoid has polarity. Make sure of the correct polarity when wiring.

SG-B1 series

(Unit: mm in)
SG-A1 series

SG-B1series / SG-A1series

Dimensions (Unit: mm in)

SG-B1■ Safety door switch with solenoid interlock

Note 1: Drill mounting holes so that they are properly aligned for the orientation in which the safety switch will be used.

When using straight actuator (SG-K11)

When using the right-angle actuator (SG-K12 / SG-K12A)

When using the angle adjustable actuator (horizontal / vertical)
(SG-K13 / SG-K14)

Notes: 2) The actuator stop is used to adjust the actuator position. Remove the actuator stop after the actuator position is mounted. 3) 41.41 .63 when using SG-K12

* The tensile strength of the SG-K12 actuator is 100N. If an excessive tensile force is applied, the actuator may fall off the door. When a tensile force exceeding 100N is expected, use the SG-K12A actuator with a plate.

Actuator mounting reference position

As shown in the figure on the right, the mounting reference position of the actuator when inserted in the safety switch is:
The actuator stop on the actuator lightly touches the safety switch.

* The actuator stop is used to adjust the actuator position. Remove the actuator stop after the actuator position is mounted.

Dimensions (Unit: mm in)

SG-A1■ Safety door switch
Mounting hole layout

When using the angle adjustable actuator (horizontal / vertical)
(SG-K13 / SG-K14)

Note 2: The actuator stop is used to adjust the actuator position. Remove the actuator stop after the actuator position is mounted.

SG-K11 / SG-K12 Actuator

Straight actuator (SG-K11)

Right-angle actuator (SG-K12)

* The tensile strength of the SG-K12 actuator is 100 N . If an excessive tensile force is applied, the actuator may fall off the door.
When a tensile force exceeding 100N is expected, use the SG-K12A actuator with a plate.

Note: The actuator stop is used to adjust the actuator position. Remove the actuator stop after the actuator position is mounted.

Actuator mounting hole layout (Straight actuator, right-angle actuator)

Dimensions (Unit: mm in)

SG-K13 / SG-K14 Actuator
 Horizontal / vertical angle adjustable actuators (SG-K13)

(Horizontal adjustment)

Horizontal / vertical angle adjustable actuators (SG-K14)
*The SG-K14 differs from the SG-K13 in that the direction in which the metal parts on the tip of the actuator are embedded is reversed by 180°

(Vertical adjustment)

Changes in the orientation of

 adjustment for angle adjustable (horizontal / vertical) actuatorsThe orientation of actuator adjustment (horizontal / vertical) can be changed using the orienting insert (white plastic) installed on the back of the actuator. Do not lose the mounting plate.

* The base is made of glass-reinforced PA66 (66 nylon). Angle adjustment screws are stainless steel (SUS).

When using adhesive on screws, take material compatibility into consideration.
Note: The actuator stop is used to adjust the actuator position. Remove the actuator stop after the actuator position is mounted.

Actuator mounting hole layout (horizontal / vertical angle adjustable actuators)

- Manual unlocking key (Accessory: plastic)

Safety door switch with key
Contact configuration / Operating patterns

Safety switch status				Status 1	Status 2	Status 3	Rear manual unlock
				- Door closed - Machine ready to operate	- Door closed - Machine cannot be operated	- Door open - Machine cannot be operated	- Door closed - Machine cannot be operated
Door status							- Press rear unlocking button. (Note 1)
Circuit diagram (Example: SG-B2-K2■D-L5)							
Door				- Closed (locked)	- Closed (unlocked)	- Open	- Closed (unlocked)
Model No. and contact configuration		e	Monitor circuit (door closed) 11-12				
			Monitor circuit (door open) 23-24				
			Monitor circuit (locked) 41-42				
			Monitor circuit (unlocked) 53-54				
	SG-B2-K2■D-5		Monitor circuit (door closed) 11-12				
			Monitor circuit (door closed) 21-22				
	Monitor circuit: Θ $11+$ 12		Monitor circuit (locked) 41-42				
	Monitor circuit:		Monitor circuit (locked) 51-52				
	SG-B2-K2■D-L5		Monitor circuit (door closed) 11-12				
			Monitor circuit (door closed) 21-22				
	Monitor circuit: Monitor circuit: Monitor circuit: Monitor circuit:		Monitor circuit (locked) 41-42				
			Monitor circuit (locked) 51-52				

Notes: 1) When the operator is confined in a hazardous area, the actuator can be unlocked manually by pressing the rear unlocking button, which should be accessed easily by the operator.
2) The above contact configuration shows the status when the actuator is inserted and the switch is locked.
3) Monitor circuit: Sends monitoring signals of protective door open / closed status or protective door lock / unlock status.

- The characteristics show the contact status when the actuator enters an entry slot of an safety switch.
- The characteristics shown in the chart above are of the SG-K21 actuator. For the others actuator, add 1.3 mm 0.051 in .

When connecting the SG-B2 series to a safety circuit, connect the door monitor circuits (11-12) Θ and the lock monitor circuits (41-42, 51-52) in series. (GS-ET-19)

