

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

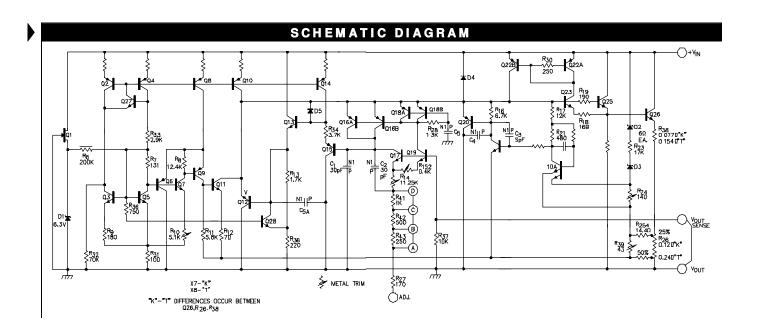
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1.5A Three Terminal Adj. Voltage Regulator

DESCRIPTION

The SG117A Series are 3-terminal over the original 117 design. A major feature of the SG117A is reference tolerance to be better than 3% using load currents up to 1.5A. inexpensive 1% resistors. Line and load regulation performance has been improved as well.

Additionally, the SG117A reference positive adjustable voltage regulators voltage is guaranteed not to exceed 2% which offer improved performance when operating over the full load, line and power dissipation conditions. The SG117A adjustable regulators offer an voltage tolerance guaranteed within ± improved solution for all positive 1%, allowing an overall power supply voltage regulator requirements with


IMPORTANT: For the most current data, consult *MICROSEMI*'s website: http://www.microsemi.com

KEY FEATURES

- 1% output voltage tolerance
- 0.01%/V line regulation
- 0.3% load regulation
- Min. 1.5A output current
- Available in hermetic TO-220

HIGH RELIABILITY FEATURES-SG117A/SG117

- Available to MIL-STD-883 and DSCC SMD
- MIL-M38510/11704BYA JAN117K
- MIL-M38510/11703BXA JAN117T
- LMI level "S" processing available

1.5A Three Terminal Adj. Voltage Regulator

Power Dissipation	Internally Limited
Input to Output Voltage Differential	_
Storage Temperature Range	65°C to 150°C
Operating Junction Temperature	150°C
Lead Temperature (Soldering 10 seconds)	

Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of specified terminal.

THERMA	LDATA
K 3 Terminal TO-3 Metal Can	
THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	3.0°C/W
THERMAL RESISTANCE-JUNCTION TO $f A$ MBIENT, $f heta_{JA}$	35°C/W
F 10-Pin Flatpack	
THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	80°C/W
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}	145°C/W
R 3 Terminal TO-66 Metal Can	
THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	5.0°C/W
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}	40°C/W
T 3-Pin TO-39 Metal Can	
THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	15°C/W
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}	120°C/W
G 3-Pin TO-257 Hermetic	
THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	3.5°C/W
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}	42°C/W
3-Pin TO-257 Hermetic (Isolated)	
THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	3.5°C/W
THERMAL RESISTANCE-JUNCTION TO $f A$ MBIENT, $f heta_{JA}$	42°C/W
20-Pin Ceramic (LCC) Leadless	
THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	35°C/W
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}	120°C/W

Junction Temperature Calculation: $T_J = T_A + (P_D x \theta_{JA})$.

The $\theta_{\rm JA}$ numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

1.5A Three Terminal Adj. Voltage Regulator

RECOMMENDED OPERATING CONDITIONS

Parameter	9	SGx17x			
Faranietei	Min	Тур	Max	Units	
Input Voltage Range	V _{OUT} + 3.5		37	V	
Operating Junction Temperature Range SG117A / SG117	-55		150	°C	
Operating Junction Temperature Range SG217A / SG217	-25		150	°C	
Operating Junction Temperature Range SG317A / SG317	0		125	°C	

Note 2: Range Over which the device is functional.

Note 3: These ratings are applicable for junction temperatures of less than 150°C

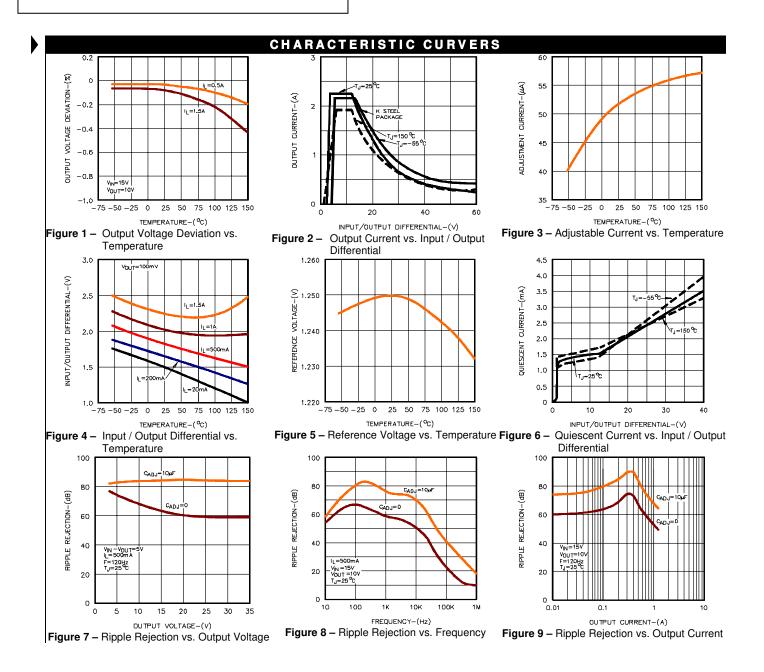
ELECTRICAL CHARACTERISTICS

Unless otherwise specified, these specifications apply over the full operating ambient temperature for the SG117A / SG117 with -55°C \leq $T_A \leq$ 125°C, the SG217A / SG217 with -25°C \leq $T_A \leq$ 85°C, and the SG317A / SG317 with 0°C \leq $T_A \leq$ 70°C, $V_{IN} - V_{OUT} =$ 5.0V and for $I_{OUT} =$ 500mA (K,R, G, and IG) and $I_{OUT} =$ 100mA (T, F, and L packages). Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2W for the T and L packages, and 20W for the K, R, G, and IG packages. I_{MAX} is 1.5A for the K, R, G, and IG packages and 500m for the T, F, and L packages. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

Parameter	Test Conditions	SG11	SG117A / SG217A			SG117 / SG217		
Farameter	rest conditions		Тур	Max	Min	Тур	Max	
Reference Voltage	$I_{OUT} = 10 \text{mA}, T_A = 25 ^{\circ}\text{C}$	1.238	1.250	1.262				V
	$3V \le (V_{IN} - V_{OUT}) \le 40V, P \le P_{MAX}$							
	$10\text{mA} \leq I_{\text{OUT}} \leq I_{\text{MAX}}$	1.225	1.250	1.270	1.20	1.25	1.30	V
Line Regulation (Note 4)	$3V \le (V_{IN} - V_{OUT}) \le 40V, I_L = 10mA$							
	$T_A = 25$ °C		0.005	0.01		0.1	0.02	%/V
	$T_A = T_{MIN}$ to T_{MAX}		0.01	0.02		0.02	0.05	%/V
Load Regulation (Note 4)	10mA ≤ I _{OUT} ≤ I _{MAX}							
	$V_{OUT} \leq 5V$, $T_A = 25^{\circ}C$		5	15		5	15	mV
	$V_{OUT} > 5V$, $T_A = 25$ °C		0.1	0.3		0.1	0.3	%
	$V_{OUT} \leq 5V$		20	50		20	50	mV
	$V_{OUT} \ge 5V$		0.3	1		0.3	1	%
Thermal Regulation (Note 5)	$T_A = 25$ °C, 20ms pulse		0.002	0.02		0.03	0.07	%/W
	$V_{OUT} = 10V, f = 120Hz$							
	$C_{ADJ} = 1\mu F$, $T_A = 25^{\circ}C$		65			65		dB
	$C_{ADJ} = 10 \mu F$	66	80		66	80		dB
Adjust Pin Current			50	100		50	100	μΑ
Adjust Pin Current Change	$10\text{mA} < I_{\text{OUT}} < I_{\text{MAX}}, 2.5\text{V} < (V_{\text{IN}} - V_{\text{OUT}}) < 40\text{V}$		0.2	5		0.2	5	μΑ
Minimum Load Current	$(V_{IN} - V_{OUT}) = 40V$		3.5	5		3.5	5	mA
Current Limit	$(V_{IN} - V_{OUT}) \leq 15V$							
	K, P, R, G, IG Packages	1.5	2.2		1.5	2.2		Α
	T, L Packages	0.5	8.0		0.5	0.8		Α
	$(V_{IN} - V_{OUT}) = 40V, T_{J} = 25^{\circ}C$							
	K, P, R, G, IG Packages	0.3	0.4		0.3	0.4		Α
	T, L Packages	0.15	0.2		0.15	0.2		Α
Temperature Stability (Note 5)			1	2		1		%
Long Term Stability (Note 5)	T _A = 125°C, 1000 Hours		0.3	1		0.3	1	%
RMS Output Noise (% of V _{OUT})	$T_A = 25^{\circ}C$, $10Hz \le f \le 10kHz$ (Note 5)		0.001			0.001		%

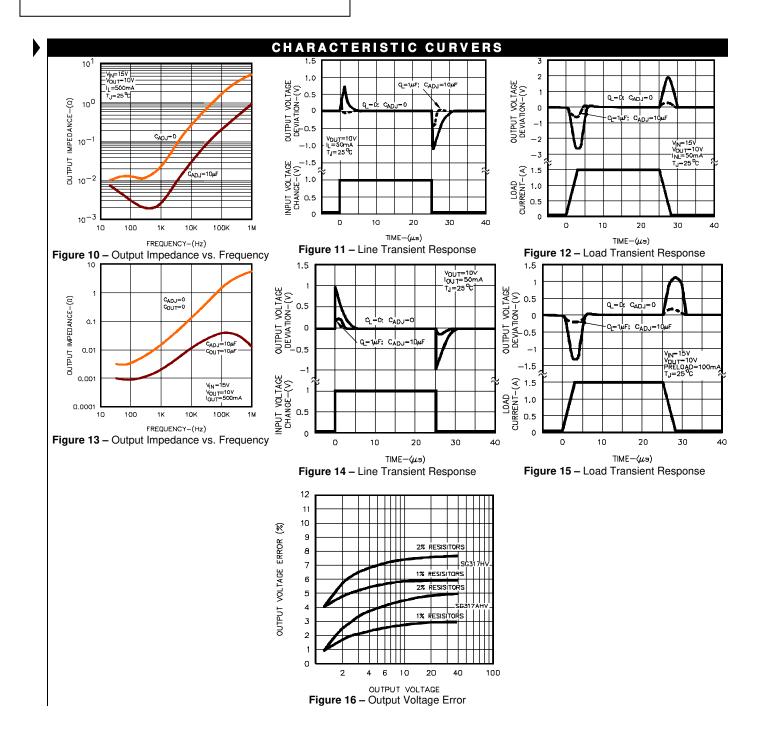
1.5A Three Terminal Adj. Voltage Regulator

ELECTRICAL CHARACTERISTICS (CONTINUED)


Unless otherwise specified, these specifications apply over the full operating ambient temperature for the SG117A / SG117 with -55°C \leq $T_A \leq$ 125°C, the SG217A / SG217 with -25°C \leq $T_A \leq$ 85°C, and the SG317A / SG317 with 0°C \leq $T_A \leq$ 70°C, $V_{IN} - V_{OUT} =$ 5.0V and for $I_{OUT} =$ 500mA (K,R, G, and IG) and $I_{OUT} =$ 100mA (T, F, and L packages). Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2W for the T and L packages, and 20W for the K, R, G, and IG packages. I_{MAX} is 1.5A for the K, R, G, and IG packages and 500m for the T, F, and L packages. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

Parameter	Test Conditions		SG317A			SG317		
Parameter	rest conditions		Тур	Max	Min	Тур	Max	
Reference Voltage	I _{OUT} = 10mA, T _A = 25°C	1.238	1.250	1.262				V
	$3V \le (V_{IN} - V_{OUT}) \le 40V, P \le P_{MAX}$							
	$10\text{mA} \leq I_{\text{OUT}} \leq I_{\text{MAX}}$	1.225	1.250	1.270	1.20	1.25	1.30	V
Line Regulation (Note 4)	$3V \le (V_{IN} - V_{OUT}) \le 40V, I_L = 10mA$							
	$T_A = 25$ °C		0.005	0.01		0.1	0.04	%/V
	$T_A = T_{MIN}$ to T_{MAX}		0.01	0.02		0.02	0.07	%/V
Load Regulation (Note 4)	$10\text{mA} \leq I_{\text{OUT}} \leq I_{\text{MAX}}$							
	$V_{OUT} \leq 5V$, $T_A = 25$ °C		5	25		5	25	mV
	$V_{OUT} > 5V$, $T_A = 25$ °C		0.1	0.5		0.1	0.5	%
	$V_{OUT} \leq 5V$		20	50		20	70	mV
	$V_{OUT} \ge 5V$		0.3	1		0.3	1.5	%
Thermal Regulation (Note 5)	$T_A = 25$ °C, 20ms pulse		0.002	0.02		0.03	0.07	%/W
Ripple Rejection	$V_{OUT} = 10V, f = 120Hz$							
	$C_{ADJ} = 1\mu F$, $T_A = 25^{\circ}C$		65			65		dB
	$C_{ADJ} = 10 \mu F$	66	80		66	80		dB
Adjust Pin Current	TA = 25°C		50	100		50	100	μΑ
Adjust Pin Current Change	$10\text{mA} < I_{\text{OUT}} < I_{\text{MAX}}, 2.5\text{V} < (V_{\text{IN}} - V_{\text{OUT}}) < 40\text{V}$		0.2	5		0.2	5	μΑ
Minimum Load Current	$(V_{IN} - V_{OUT}) = 40V$		3.5	5		3.5	5	mA
Current Limit	$(V_{IN} - V_{OUT}) \le 15V$							
	K, P, R, G, IG Packages	1.5	2.2		1.5	2.2		Α
	T, L Packages	0.5	8.0		0.5	0.8		Α
	$(V_{IN} - V_{OUT}) = 40V, T_{J} = 25^{\circ}C$							
	K, P, R, G, IG Packages	0.3	0.4		0.3	0.4		Α
	T, L Packages	0.15	0.2		0.15	0.2		Α
Temperature Stability (Note 5)			1	2		1		%
Long Term Stability (Note 5)	T _A = 125°C, 1000 Hours		0.3	1		0.3	1	%
RMS Output Noise (% of V _{OUT})	$T_A = 25^{\circ}C$, $10Hz \le f \le 10kHz$ (Note 5)		0.001			0.001		%

NOTES



1.5A Three Terminal Adj. Voltage Regulator

1.5A Three Terminal Adj. Voltage Regulator

1.5A Three Terminal Adj. Voltage Regulator

APPLICATION INFORMATION

GENERAL

The SG117A develops a 1.25V reference voltage between the output and the adjustable terminal (see Figure 1). By placing a resistor, R_1 between these two terminals, a constant current is caused to flow through R₁ and down through R₂ to set the overall output voltage, Normally this current is the specified minimum load current of 5mA or 10mA.

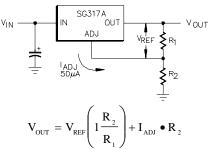


Figure 17 - Basic Regulator Circuit

Because I_{ADI} is very small and constant when compared with the current through R₁, it represents a small error and can usually be ignored.

It is easily seen from the above equation, that even if the resistors were of exact value, the accuracy of the output is limited by the accuracy of V_{REF}. Earlier adjustable regulators had a reference tolerance of ±4%. This tolerance is dangerously close to the ±5% supply tolerance required in many logic and analog systems. Further, many 1% resistors can drift 0.01%°C adding another 1% to the output voltage tolerance.

For example, using 2% resistors and ±4% tolerance for VREF, calculations will show that the expected range of a 5V regulator design would be 4.66V \leq V_{OUT} \leq 5.36V or approximately ±7%. If the same example were used for a 15V regulator, the expected tolerance would be ±8%. With these results most applications require some method of trimming, usually a trim pot. This solution is expensive and not conducive to volume production.

One of the enhancements of Silicon General's adjustable regulators over existing devices is tightened initial tolerance. This allows relatively inexpensive 1% or 2% film resistors to be used for R₁ and R₂ while setting output voltage within an acceptable tolerance range.

With a guaranteed 1% reference, a 5V power supply design, using ±2% resistors, would have a worse case manufacturing tolerance of ±4%. If 1% resistors were used, the tolerance would drop to $\pm 2.5\%$. A plot of the worst case output voltage tolerance as a function of resistor tolerance is shown on the front page.

For convenience, a table of standard 1% resistor values is shown below

Table of 1/2% and 1% Standard Resistance Values

Table of 7270 and 170 Standard Hobistance Value					
1.00	1.47	2.15	3.16	4.64	6.81
1.02	1.50	2.21	3.24	4.75	6.98
1.05	1.54	2.26	3.32	4.87	7.15
1.07	1.58	2.32	3.40	4.99	7.32
1.10	1.62	2.37	3.48	5.11	7.50
1.13	1.65	2.43	3.57	5.23	7.68
1.15	1.69	2.49	3.65	5.36	7.87
1.18	1.74	2.55	3.74	5.49	8.06
1.21	1.78	2.61	3.83	5.62	8.25
1.24	1.82	2.67	3.92	5.76	8.45
1.27	1.87	2.74	4.02	5.90	8.66
1.30	1.91	2.80	4.12	6.04	8.87
1.33	1.96	2.87	4.22	6.19	9.09
1.37	2.00	2.94	4.32	6.34	9.31
1.40	2.05	3.01	4.42	6.49	9.53
1.43	2.10	3.09	4.53	6.65	9.76

Standard Resistance Values are obtained from the Decade Table by multiplying by multiples of 10. As an example: 1.21 can represent 1.21Ω , 12.1Ω , 121Ω , $1.21k\Omega$,

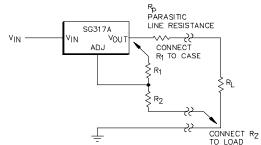
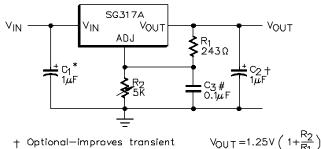



Figure 18 - Connections for Best Load Regulation

- Optional—improves transient response
 - Needed if device is far from filter capacitors
- # Needed if load current is mechanically switched

Figure 19 - 1.2V - 25V Adjustable Regulator

1.5A Three Terminal Adj. Voltage Regulator

APPLICATION INFORMATION (CONTINUED)

BYPASS CAPACITORS

Input bypassing using a $1\mu F$ tantalum or $25\mu F$ electrolytic is recommended when the input filter capacitors are more than 5 inches from the device. A $0.1\mu F$ bypass capacitor on the ADJUST pin is required if the load current varies by more than $1A/\mu sec$. Improved ripple rejection (80dB) can be accomplished by adding a $10\mu F$ capacitor from the adjust pin to ground. For improved AC transient response and to prevent the possibility of oscillation due to unknown reactive load, a $1\mu F$ capacitor is also recommended at the output. Because of their low impedance at high frequencies, the best type of capacitor to use is solid tantalum.

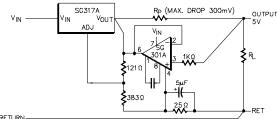
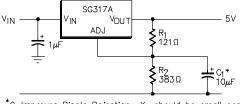
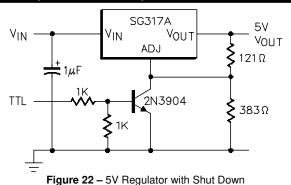



Figure 20 - Remote Sensing

*C₁ Improves Ripple Rejection. X_C should be small compared to R₂.


Figure 21 - Improving Ripple Rejection

LOAD REGULATION

Because the SG117A is a three-terminal device, it is not possible to provide true remote load sensing. Load regulation will be limited by the resistance of the wire connecting the regulator to the load. For the data sheet specification, regulation is measured at the bottom of the package. Negative side sensing is a true Kelvin connection, with the bottom of the output divider returned to the negative side of the load. Although it may not be immediately obvious, best load regulation is obtained when the top of the divider is connected directly to the case, not to the load. This is illustrated in Figure 18. If R_1 were connected to the load, the effective resistance between the regulator and the load would be

$$R_{p} \bullet \left(\frac{R_{2} + R_{1}}{R_{1}}\right), R_{p} = Parasitic Line Resistance$$

Connected as shown, R_P is not multiplied by the divider ratio. R_P is about 0.004Ω per foot using 16 gauge wire. This translates to 4mV/ft. at 1A load current, so it is important to keep the positive lead between regulator and load as short as possible.

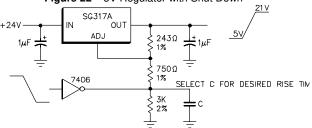


Figure 23 – 21V Programming Supply for UV Prom/ EEPROM

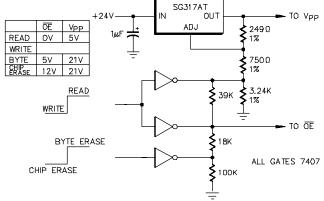
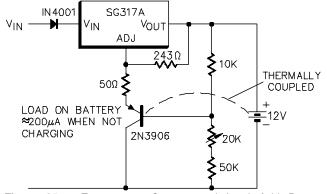



Figure 24 – 2816 EEPROM Supply Programmer for Read / Write Control

Figure 25 – Temperature Compensated Lead Acid Battery Charger

SG117/217/317/117A/217A/317A

1.5A Three Terminal Adj. Voltage Regulator

CONNECTION DIAGRAMS & ORDERING INFORMATION (SEE NOTES BELOW)

Package	Part No.	Ambient Temperature Range	Connection Diagram
	SG117AK/883B	-55°C to 125°C	
	SG117AK/DESC	-55°C to 125°C	ADJUSTMENT
	SG117AK	-55°C to 125°C	
	SG217AK	-25°C to 85°C	
3-Terminal TO-3 Metal Can	SG317AK	0°C to 70°C	
K – Package	SG117K/883B	-55°C to 125°C	
N-1 ackage	JAN117K	-55°C to 125°C	
	SG117K/DESC	-55°C to 125°C	
	SG117K	-55°C to 125°C	V _{IN}
	SG217K	-25°C to 85°C	Case is V _{OUT}
	SG317K	0°C to 70°C	
	SG117AR/883B	-55°C to 125°C	
	SG117AR/DESC	-55°C to 125°C	ADJUSTMENT
	SG117AR	-55°C to 125°C	
	SG217AR	-25°C to 85°C	
3-Pin TO-66 Metal Can	SG317AR	0°C to 70°C	
R – Package	SG117R/883B	-55°C to 125°C	
- J	SG117AR/DESC	-55°C to 125°C	
	SG117R	-55°C to 125°C	V _{IN}
	SG217R	-25°C to 85°C	***
	SG317R	0°C to 70°C	Case is V _{OUT}
	SG117AT/883B	-55°C to 125°C	
	SG117AT/DESC	-55°C to 125°C	
	SG117AT/DESC	-55°C to 125°C	_
	SG217AT	-25°C to 85°C	
			$V_{IN} \bigcirc^1$
3-Pin TO-39 Metal Can	SG317AT	0°C to 70°C	(
T – Package	SG117T/883B	-55°C to 125°C	ADJUST \ \ \cap^2 \ \ \cap^3 \ \ V_{OUT}
-	JAN117T	-55°C to 125°C	ADJUST \ O V _{OUT}
	SG117T/DESC	-55°C to 125°C	
	SG117T	-55°C to 125°C	Case is V _{OUT}
	SG217T	-25°C to 85°C	
	SG317T	0°C to 70°C	
	SG117AIG/883B	-55°C to 125°C	
	SG117AIG/DESC	-55°C to 125°C	- $ -$
3-Pin Hermetic TO-257	SG117AIG	-55°C to 125°C	V _{out}
IG – Package (Isolated)	SG117IG/883B	-55°C to 125°C	ADJUST
	SG117IG/DESC	-55°C to 125°C	7,50001
	SG117IG	-55°C to 125°C	
	SG117AL/883B	-55°C to 125°C	N.O. O. V.O. V.O.
	SG117AL/DESC	-55°C to 125°C	0 0 0 0
	SG117AL	-55°C to 125°C	
	SG117L/883B	-55°C to 125°C	N.C.)ω ω (N.C.
20-Pin Ceramic (LCC) Leadless Chip	SG117L/DESC	-55°C to 125°C	ADJUST pa № (N.C.
Carrier	SG117L	-55°C to 125°C	N.C. D≡ □─□ V _{OUT} SENSE
L – Package			N.C. D≅ ⊗ C V _{OUT}
Litatinge			N.C. Þ≅
			4 7 6 7 6
			Z Z Z Z Z
			z z z z z o o o o o o o o o o o o o o o
	0044740/0057	5505 : 15515	
	SG117AG/883B	-55°C to 125°C	V _{IN}
3-Pin Hermetic TO-257	SG117AG/DESC	-55°C to 125°C	
G – Package (Case is V _{OUT})	SG117AG	-55°C to 125°C	V _{out}
a lackage (Case is VOUT)	SG117G/883B	-55°C to 125°C	ADJUST
	SG117G	-55°C to 125°C	Case is V _{OUT}
	SG117AF	-55°C to 125°C	
	SG117AF/883B	-55°C to 125°C	N.C. S S V _{OUT}
10-Pin Flatpack	SG117F	-55°C to 125°C	N.C. N.C.
	33177	00 0 10 120 0	V _{IN} S S V _{OUT}
F – Package			
F – Package	SG117F/883B	-55°C to 125°C	V _N 2 2 N.C. ADJUST 10 1 N.C.

Note

- 1: Contact factory for JAN and DESC product availability.
- 2: All parts are viewed from the top.
- 3: Both inputs and outputs must be externally connected together at the device terminals.
- 4: For normal operation, the SENSE pin must be externally connected to the load.