: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

DESCRIPTION

The SG2000 series integrates seven NPN Darlington pairs with internal suppression diodes to drive lamps, relays, and solenoids in many military, aerospace, and industrial applications that require severe environments. All units feature open collector outputs with greater than 50V breakdown voltages combined with 500 mA current carrying capabilities. Five different input configurations provide optimized designs for interfacing with DTL, TTL, PMOS, or CMOS drive signals. These devices are designed to operate from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ ambient temperature in a 16 pin dual in line ceramic (J) package and 20 pin Leadless Chip Carrier (LCC). The plastic dual in-line (N) is designed to operate over the commercial temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FEATURES

- Seven npn Darlington pairs
- $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ ambient operating temperature range
- Collector currents to 600 mA
- Output voltages from 50V to 95V
- Internal clamping diodes for inductive loads
- DTL, TTL, PMOS, or CMOS compatible inputs
- Hermetic ceramic package

HIGH RELIABILITY FEATURES

- Available to MIL-STD-883 and DESC SMD
- MIL-M38510/14101BEA - JAN2001J
- MIL-M38510/14102BEA - JAN2002J
- MIL-M38510/14103BEA - JAN2003J
- MIL-M38510/14104BEA - JAN2004J
- Radiation data available
- LMI level "S" processing available

PARTIAL SCHEMATICS

SG2001/2011/2021

SG2003/2013/2023

ABSOLUTE MAXIMUM RATINGS (Note 1)

Output Voltage, V_{CE}
(SG2000, 2010 series) .. 50 V
(SG2020 series) .. 95V
Input Voltage, $\mathrm{V}_{\mathbb{N}}$ (SG2002,3,4)30V
Continuous Input Current, I_{N} 25 mA
Note 1. Values beyond which damage may occur.
THERMAL DATA
J Package:
Thermal Resistance-Junction to Case, θ_{J} $30^{\circ} \mathrm{C} / \mathrm{W}$
N Package:
Thermal Resistance-Junction to Case, θ_{Jc} $40^{\circ} \mathrm{C} / \mathrm{W}$
L Package:
Thermal Resistance-Junction to Case, θ_{J} $35^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance-Junction to Ambient, θ_{JA} $120^{\circ} \mathrm{C} / \mathrm{W}$
Peak Collector Current, I_{c} (SG2000, 2020) 500 mA
(SG2010) 600 mA
Operating Junction Temperature
Hermetic (J, L Packages) $150^{\circ} \mathrm{C}$
Plastic (N, Packages) $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to 1
Lead Temperature (Soldering 10 sec .) $300^{\circ} \mathrm{C}$
RoHS Peak Package Solder Reflow Temp. (40 sec. max. exp.)...... $260^{\circ} \mathrm{C}(+0,-5$)
Note A. Junction Temperature Calculation: $T_{J}=T_{A}+\left(P_{D} \times \theta_{J A}\right)$.Note B. The above numbers for θ_{jc} are maximums for the limiting thermalresistance of the package in a standard mounting configuration.The $\theta_{J A}$ numbers are meant to be guidelines for the thermalperformance of the device/pc-board system. All of the aboveassume no ambient airflow.
RECOMMENDED OPERATING CONDITIONS (Note 2)
Output Voltage, V_{CE} SG2000, SG2010 series 50V
SG2020 series 95V

Note 2. Range over which the device is functional.

Peak Collector Current, $\mathrm{I}_{\text {c }}$	
SG2000, SG2020 series	50 mA
SG2010 series	500 mA
Operating Ambient Temperature Range	
SG2000 Series - Hermetic	$-55^{\circ} \mathrm{C}$ to 125°
SG2000 Series - Plastic	$0^{\circ} \mathrm{C}$ to 70

SELECTION GUIDE

Device	$\mathrm{V}_{\text {CE }}$ Max	I_{c} Max	Logic Inputs
SG2001	50 V	500 mA	General Purpose PMOS, CMOS
SG2002	50 V	500 mA	$14 \mathrm{~V}-25 \mathrm{~V}$ PMOS
SG2003	50 V	500 mA	5 V TTL, CMOS
SG2004	50 V	500 mA	6V-15V CMOS, PMOS
SG2011	50 V	600 mA	General Purpose PMOS, CMOS
SG2012	50 V	600 mA	$14 \mathrm{~V}-25 \mathrm{~V}$ PMOS

Device	$\mathbf{V}_{\text {CE }}$ Max	\mathbf{I}_{c} Max	Logic Inputs
SG2013	50 V	600 mA	5 V TTL, CMOS
SG2014	50 V	600 mA	6 V -15V CMOS, PMOS
SG2015	50 V	600 mA	High Output TTL
SG2021	95 V	500 mA	General Purpose PMOS, CMOS
SG2023	95 V	500 mA	5 V TTL, CMOS
SG2024	95 V	500 mA	6 V -15V CMOS, PMOS

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG 2000 series - Hermetic - with $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ and SG2000 series - Plastic - with $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)
SG2001 thru SG2004

Parameter	Applicable Devices	Temp.	Test Conditions	Limits			Units
				Min.	Typ.	Max.	
Output Leakage Current ($\mathrm{I}_{\text {CEX }}$)	All		$\mathrm{V}_{\text {CE }}=50 \mathrm{~V}$			100	$\mu \mathrm{A}$
	SG2002		$\mathrm{V}_{\text {CE }}=50 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=6 \mathrm{~V}$			500	$\mu \mathrm{A}$
	SG2004		$V_{\text {CE }}=50 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1 \mathrm{~V}$			500	$\mu \mathrm{A}$
Collector - Emitter ($\mathrm{V}_{\text {CE(SAT) }}$)	All	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$	$\mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=850 \mu \mathrm{~A}$		1.6	1.8	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$	$\mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=550 \mu \mathrm{~A}$		1.3	1.5	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=350 \mu \mathrm{~A}$		1.1	1.3	V
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=500 \mu \mathrm{~A}$		1.25	1.6	V
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=350 \mu \mathrm{~A}$		1.1	1.3	V
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=250 \mu \mathrm{~A}$		0.9	1.1	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$\mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=500 \mu \mathrm{~A}$		1.6	1.8	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$\mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=350 \mu \mathrm{~A}$		1.3	1.5	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=250 \mu \mathrm{~A}$		1.1	1.3	V
Input Current (1) ${ }_{\text {IN(ON }}$)	SG2002		$\mathrm{V}_{\text {IN }}=17 \mathrm{~V}$	480	850	1300	$\mu \mathrm{A}$
	SG2003		$\mathrm{V}_{\text {IN }}=3.85 \mathrm{~V}$	650	930	1350	$\mu \mathrm{A}$
	SG2004		$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$	240	350	500	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$	650	1000	1450	$\mu \mathrm{A}$
$\text { Input Voltage }\left(\mathrm{V}_{\text {IN(OF) }}\right)$	All	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}$	25	50		$\mu \mathrm{A}$
	SG2002	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$			18	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$			13	V
	SG2003	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}$			3.3	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=250 \mathrm{~mA}$			3.6	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$			3.9	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}$			2.4	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=250 \mathrm{~mA}$			2.7	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$			3.0	V
	SG2004	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=125 \mathrm{~mA}$			6.0	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}$			8.0	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=275 \mathrm{~mA}$			10	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}$			12	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=125 \mathrm{~mA}$			5.0	V
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}$			6.0	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=275 \mathrm{~mA}$			7.0	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}$			8.0	V
D-C Forward Current	SG2001	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}$	500			
Transfer Ratio ($\mathrm{h}_{\text {FE }}$)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}$	1000			
Input Capacitance ($\mathrm{C}_{\mathbb{N}}$) (Note 3)	All	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			15	25	pF
Turn-On Delay (TPLH)	All	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$0.5 \mathrm{E}_{\text {IN }}$ to $0.5 \mathrm{E}_{\text {out }}$		250	1000	ns
Turn-Off Delay (TPHL)	All	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$0.5 \mathrm{E}_{\text {IN }}$ to $0.5 \mathrm{E}_{\text {out }}$		250	1000	ns
Clamp Diode Leakage Current (I_{R})	All		$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$			50	$\mu \mathrm{A}$
Clamp Diode Forward Voltage (V_{F})	All		$\mathrm{I}_{\mathrm{F}}=350 \mathrm{~mA}$		1.7	2.0	V

Note 3. These parameters, although guaranteed, are not tested in production.

ELECTRICAL CHARTACTERISTICS (continued)

SG2011 thru SG2015

Parameter	Applicable Devices	Temp.	Test Conditions	Limits			Units
				Min.	Typ.	Max.	
Output Leakage Current ($\mathrm{I}_{\text {CEX }}$)	All		$\mathrm{V}_{\text {CE }}=50 \mathrm{~V}$			100	$\mu \mathrm{A}$
	SG2012		$V_{\text {CE }}=50 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=6 \mathrm{~V}$			500	$\mu \mathrm{A}$
	SG2014		$V_{\text {CE }}=50 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1 \mathrm{~V}$			500	$\mu \mathrm{A}$
Collector - Emitter ($\mathrm{V}_{\text {CE(SAT) }}$)	All	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1100 \mu \mathrm{~A}$		1.8	2.1	V
		$\mathrm{T}_{\mathrm{A}}^{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$\mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=850 \mu \mathrm{~A}$		1.6	1.8	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$\mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=550 \mu \mathrm{~A}$		1.3	1.5	V
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=600 \mu \mathrm{~A}$		1.7	1.9	V
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=500 \mu \mathrm{~A}$		1.25	1.6	V
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=350 \mu \mathrm{~A}$		1.1	1.3	V
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MAX }}$	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=600 \mu \mathrm{~A}$		1.8	2.1	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$\mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=500 \mu \mathrm{~A}$		1.6	1.8	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$\mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=350 \mu \mathrm{~A}$		1.3	1.5	V
Input Current ($\mathrm{I}_{\text {IN(ON }}$)	SG2012		$\mathrm{V}_{\text {IN }}=17 \mathrm{~V}$	480	850	1300	$\mu \mathrm{A}$
	SG2013		$\mathrm{V}_{\text {IN }}=3.85 \mathrm{~V}$	650	930	1350	$\mu \mathrm{A}$
	SG2014		$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$	240	350	500	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$	650	1000	1450	$\mu \mathrm{A}$
	SG2015		$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$	1180	1500	2400	$\mu \mathrm{A}$
$\left(\mathrm{I}_{\text {IV (OFF) }}\right)$	All	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}$	25	50		$\mu \mathrm{A}$
Input Voltage $\left(\mathrm{V}_{\text {IN(OFO) }}\right)$	SG2012	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$			23.5	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$			17	V
	SG2013	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=250 \mathrm{~mA}$			3.6	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$			3.9	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$			6.0	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=250 \mathrm{~mA}$			2.7	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$			3.0	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$			3.5	V
	SG2014	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=275 \mathrm{~mA}$			10	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}$			12	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$			17	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=275 \mathrm{~mA}$			7.0	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}$			8.0	V
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$			9.5	V
	SG2015	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}$			3.0	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$			3.5	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}$			2.4	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$			2.6	V
D-C Forward Current	SG2011	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$	450			
Transfer Ratio ($\mathrm{h}_{\text {FE }}$)		$\mathrm{T}_{\mathrm{A}}^{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$	900			
Input Capacitance ($\mathrm{C}_{\text {IN }}$) (Note 3)	All	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			15	25	pF
Turn-On Delay (TPLH)	All	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$0.5 \mathrm{E}_{\text {IN }}$ to $0.5 \mathrm{E}_{\text {out }}$		250	1000	ns
Turn-Off Delay (TPHL)	All	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$0.5 \mathrm{E}_{\text {IN }}$ to $0.5 \mathrm{E}_{\text {out }}$		250	1000	ns
Clamp Diode Leakage Current (I_{R})	All		$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$			50	$\mu \mathrm{A}$
Clamp Diode Forward Voltage (V_{F})	All		$\mathrm{I}_{\mathrm{F}}=350 \mathrm{~mA}$		1.7	2.0	V
			$\mathrm{I}_{\mathrm{F}}=500 \mathrm{~mA}$			2.5	V

Note 3. These parameters, although guaranteed, are not tested in production.

ELECTRICAL CHARACTERISTICS (continued)

SG2021 thru SG2024

Parameter	Applicable Devices	Temp.	Test Conditions	Limits			Units
				Min.	Typ.	Max.	
Output Leakage Current ($\mathrm{I}_{\text {CEX }}$)	All		$\mathrm{V}_{\text {CE }}=95 \mathrm{~V}$			100	$\mu \mathrm{A}$
	SG2024		$\mathrm{V}_{\text {CE }}=95 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1 \mathrm{~V}$			500	$\mu \mathrm{A}$
Collector - Emitter ($\mathrm{V}_{\text {CE(SAT }}$)	All	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$\mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=850 \mu \mathrm{~A}$		1.6	1.8	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$\mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=550 \mu \mathrm{~A}$		1.3	1.5	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=350 \mu \mathrm{~A}$		1.1	1.3	V
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=500 \mu \mathrm{~A}$		1.25	1.6	V
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=350 \mu \mathrm{~A}$		1.1	1.3	V
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=250 \mu \mathrm{~A}$		0.9	1.1	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$\mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=500 \mu \mathrm{~A}$		1.6	1.8	V
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MaX }}$	$\mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=350 \mu \mathrm{~A}$		1.3	1.5	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=250 \mu \mathrm{~A}$		1.1	1.3	V
Input Current ($\left.\mathrm{I}_{\text {IN(ON) }}\right)$	SG2023		$\mathrm{V}_{1 /}=3.85 \mathrm{~V}$	650	930	1350	$\mu \mathrm{A}$
	SG2024		$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$	240	350	500	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$	650	1000	1450	$\mu \mathrm{A}$
	All	$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MAX }}$	$\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}$	25	50		$\mu \mathrm{A}$
Input Voltage ($\mathrm{V}_{\text {IN(ON) }}$)		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$			13	V
	SG2023	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}$			3.3	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=250 \mathrm{~mA}$			3.6	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$			3.9	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Max }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}$			2.4	V
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MaX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=250 \mathrm{~mA}$			2.7	V
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$			3.0	V
	SG2024	$T_{A}=T_{\text {MAX }}$	$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=125 \mathrm{~mA}$			6.0	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}$			8.0	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=275 \mathrm{~mA}$			10	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}$			12	V
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {Max }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=125 \mathrm{~mA}$			5.0	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}$			6.0	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=275 \mathrm{~mA}$			7.0	V
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}$			8.0	V
D-C Forward Current	SG2021	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}$	500			
Transfer Ratio ($\mathrm{h}_{\text {FE }}$)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}$	1000			
Input Capacitance ($\mathrm{C}_{\text {IN }}$) (Note 3)	All	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			15	25	pF
Turn-On Delay (TPLH)	All	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$0.5 \mathrm{E}_{\text {IN }}$ to $0.5 \mathrm{E}_{\text {out }}$		250	1000	ns
Turn-Off Delay (TPHL)	All	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$0.5 \mathrm{E}_{\text {IN }}$ to $0.5 \mathrm{E}_{\text {out }}$		250	1000	ns
Clamp Diode Leakage Current (I_{R})	All		$\mathrm{V}_{\mathrm{R}}=95 \mathrm{~V}$			50	$\mu \mathrm{A}$
Clamp Diode Forward Voltage (V_{F})	All		$\mathrm{I}_{\mathrm{F}}=350 \mathrm{~mA}$		1.7	2.0	V

Note 3. These parameters, although guaranteed, are not tested in production.

FIGURE 1.
OUTPUT CHARACTERISTICS

FIGURE 4.
INPUT CHARACTERISTICS - SG2002

FIGURE 2.
OUTPUT CURRENT VS. INPUT VOLTAGE

FIGURE 5.
INPUT CHARACTERISTICS - SG2003

FIGURE 3.
OUTPUT CURRENT VS. INPUT CURRENT

FIGURE 6.
INPUT CHARACTERISTICS - SG2004

FIGURE 7
PEAK COLLECTOR CURRENT VS. DUTY CYCLE

CONNECTION DIAGRAMS \& ORDERING INFORMATION
(See Notes Below)

Package	Part No. (Note 3)	Ambient Temperature Range	Connection Diagram
16-PIN CERAMIC DIP J - PACKAGE 16-PIN PLASTIC DIP N - PACKAGE	$\begin{aligned} & \text { SG2XXXJ/883B } \\ & \text { SG2023J/DESC } \\ & \text { JAN2001J } \\ & \text { JAN2002J } \\ & \text { JAN2003J } \\ & \text { JAN2004J } \\ & \text { SG2XXXJ } \\ & \\ & \\ & \text { SG2003N } \\ & \text { SG2023N } \end{aligned}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	N Package: RoHS Compliant / Pb-free Transition DC: 0503 N Package: RoHS / Pb-free 100\% Matte Tin Lead Finish
20-PIN CERAMIC LEADLESS CHIP CARRIER L-PACKAGE	$\begin{aligned} & \text { SG2XXXL/883B } \\ & \text { SG2XXXL } \end{aligned}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	

DW Package (Not Pictured) is 16-Pin Wide Body SOIC, same pinout as J package pictured above.
DW Package: RoHS Compliant / Pb-free Transition DC: 0516
DW Package: RoHS / Pb-free 100\% Matte Tin Lead Finish

Note 1. Contact factory for JAN and DESC product availability.
2. All parts are viewed from the top.
3. See selection guide for specific device types.

