mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

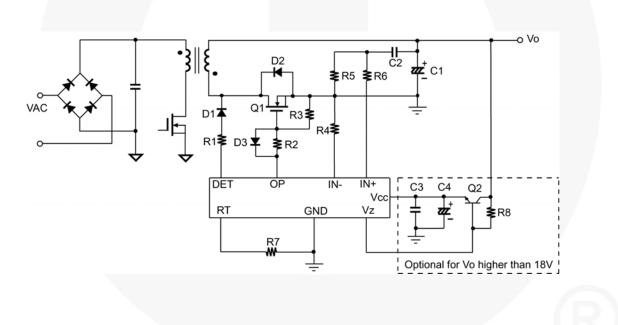
SG6203

FEATURES

- Low operation current (1.7mA)
- One resistor for timing setting
- Internal automatic tracking for optimum dead time
- No reverse energy flow at light load
- Best suited for primary green-mode PWM IC
- Wide supply voltage range from 6V to 20V
- Built-in 18V Zener diode
- Optional current sensing:
 - Current shunt
 - RC network for better efficiency

APPLICATIONS

Flyback converters, such as:

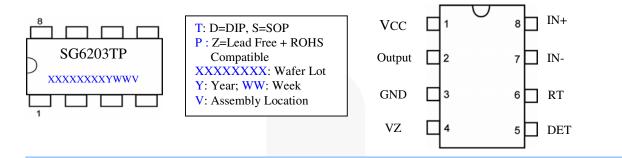

- Power adaptors
- Open-frame SMPS

TYPICAL APPLICATION

DESCRIPTION

The SG6203 is designed to control and drive the synchronous rectifier for the flyback converter. The synchronous signal of the primary switch is obtained by a single diode connected between the transformer secondary winding and the SG6203. Using the SG6203, no additional transformer winding is required and the circuit complexity can be minimized.

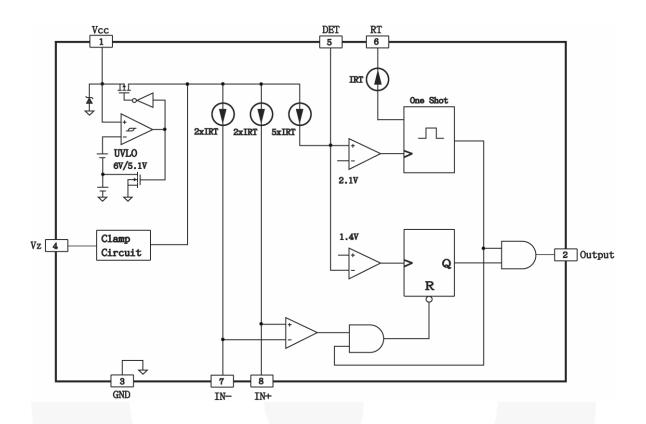
The power unit can be properly operated under discontinuous conduction mode (DCM) or continuous conduction mode (CCM). Problems such as "shoot-through" or "cross conduction" in CCM and energy-reverse from the secondary to the primary in DCM are prevented by the SG6203 design.



SG6203

MARKING DIAGRAMS

ORDERING INFORMATION


Part Number	Pb-Free	Package					
SG6203SZ		8-Pin SOP					
SG6203DZ		8-Pin DIP					

PIN DESCRIPTIONS

Pin	Name	Function
1	Vcc	Supply voltage of gate driver and control circuits.
2	Output	Totem-pole output to drive the synchronous power MOSFET. When the voltage on DET pin falls below 1.4V from above 2.1V, the synchronous MSOFET is turned on. To prevent the reversed energy flow, this pin is disabled once the voltage on IN+ pin is lower than that of IN- pin or the internal one-shot timer is terminated.
3	GND	The power ground and signal ground. A 0.1µF decoupling capacitor placed between VCC and GND is recommended.
4	VZ	Built-in 18V Zener diode. When the flyback output voltage is higher than 18V, this pin can be used to provide a stable 18V to VCC pin. If the flyback output voltage is lower than 18V, this pin can be left open and the output voltage connected directly to VCC pin.
5	DET	Connecting a diode from this pin to the transformer secondary winding provides on/off information of the primary switch. Low DET level indicates the secondary rectifier is conducted, therefore the synchronous MOSFET should be turned on. DET stays high when the primary switch is conducting or secondary rectifier turns off and the synchronous MOSFET should be turned off.
6	RT	Current reference. Connecting a resistor from this pin to ground can program the internal current reference I_{RT} . Three internal current sources, which are I_{IN+} , I_{IN-} , and I_{DET} , are then mirrored from I_{RT} . I_{RT} determines the duration of the internal one-shot signal, then the maximum on-time of the synchronous MOSFET is obtained by subtracting the on-time of the primary switch from the one-shot signal duration. If the resistor is too small, the synchronous MOSFET may be turned off even when the secondary rectifier is still conducting, which decreases the system efficiency. However, if the resistor is too large, the output is shut off immediately once DET gets high. In SG6203, an internal phase-locked-loop (PLL) modulates the duration of the internal one-shot signal to maintain a suitable dead time between the primary switch and the synchronous MOSFET.
7	IN-	The inverting input of the current sense comparator. In discontinuous conduction mode, the secondary rectifier turns off before the next switching cycle of the primary switch. Once the secondary rectifier is off, the synchronous MOSFET must be turned off to prevent the reversed energy flow. A resistor connected between IN+ and IN- can used to develop the zero current crossing signal of the secondary rectifier. Once the voltage on IN+ is lower than IN-, the output is pulled low.
8	IN+	The non-inverting input of the current sense comparator. In discontinuous conduction mode, the secondary rectifier turns off before the next switching cycle of the primary switch. Once the secondary rectifier is off, the synchronous MOSFET must be turned off to prevent the reversed energy flow. A resistor connected between IN+ and IN- can used to develop the zero current crossing signal of the secondary rectifier. Once the voltage on IN+ is lower than IN-, the output is pulled low.

BLOCK DIAGRAM

SG6203

Symbol	Parameter	Value	Unit	
V _{cc}	DC Supply Voltage*		25	V
lout	Gate Output Current		500	mA
V _H	DET, OUT, VZ		-0.3 to 25.0	V
VL	RT, IN+, IN-			V
D	Dower Dissinction	SOP8	400	ma\\//
P _D	Power Dissipation	DIP8	800	—mW
_		SOP8	208.4	°044/
R _{0 JA}	Thermal Resistance (Junction-to-Air)	DIP8	82.5	−°C/W
TJ	Operating Junction Temperature		150	°C
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature (Soldering, 10 Seconds)	300	°C	
E8D	Electrostatic Discharge Capability, Human Body Model		2.0	KV
ESD	Electrostatic Discharge Capability, Machine Model			V

ABSOLUTE MAXIMUM RATINGS

* All voltage values, except differential voltages, are given with respect to GND pin.

* Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{cc}	DC Supply Voltage	<20	V
T _A	Operating Ambient Temperature	-30~85	°C
R _T	Pulse Width of the One-shot Signal	12~36	κΩ

ELECTRICAL CHARACTERISTICS

 $V_{CC}=12V$; $R_{T}=24K\Omega$; $T_{A}=25^{\circ}C$, unless otherwise noted.

Timing Control Section

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
V _{RT}	Voltage on RT Pin		1.14	1.20	1.26	V
T _{RT}		R _⊺ =12KΩ	6.5	7.5	8.5	μs
	Pulse Width of the One-shot Signal	R _τ =24KΩ	13	15	17	μs
		R _τ =36KΩ	19.5	22.5	25.5	μs
△ T _{RT}	Adjustable Range of the Pulse Width Compared to T_{RT}			+60	+80	%
T _{DEAD}	Timing Margin Between Output Turn-off (Output Falling) and Next Switching Cycle Start (DET Rising)		200		1000	ns

SG6203

Synchronous Detection Section								
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit		
V _{TH}	Threshold Voltage to Enable One-shot Signal		1.9	2.1	2.3	V		
V _{TL}	Threshold Voltage to Enable Output	IN+ - IN- > 5mV	1.2	1.4	1.6	V		
I _{DET}	Current Output from DET Pin	R _τ =24KΩ		250	300	μA		
T _{D_LOW}	Debounce Time from DET Low to Enable Output		150		300	ns		

Current Detection Section

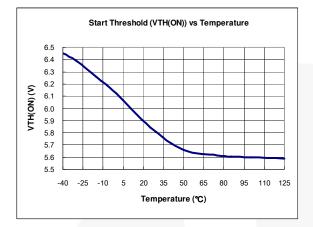
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
VOFFSET	Offset Voltage				10	mV
I _{IN+}	Current Output from IN+	R _τ =24KΩ	90	100	110	μA
I _{IN-}	Current Output from IN-	R _τ =24KΩ	90	100	110	μA
I _{IN+} - I _{IN-}	Differential Current of IN+ and IN-	12KΩ < R _T < 36KΩ			1.5	μA
T _P	Propagation Delay (OUTPUT from Low to High)	DET< V _{TL} , IN+ - IN- > 5mV	0		200	ns
PSRR	Power Supply Rejection Ratio			65		dB
CMRR	Common Mode Rejection Ratio			65		dB
CMRR-f	Common Mode Rejection Ratio at 70KHz			32		dB

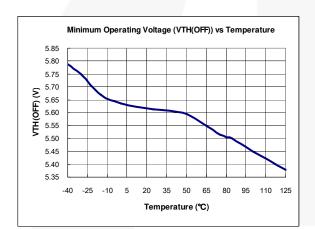
Zener Section

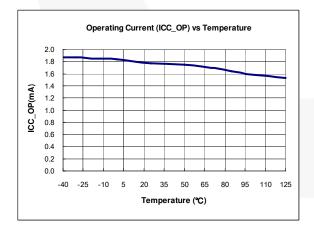
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vz	Zener Voltage	I _{VZ=} 0.1 ~ 3mA	18	19	20	V

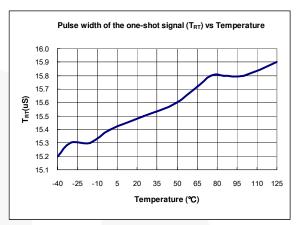
Output Section

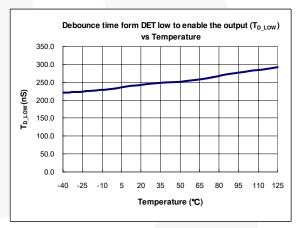
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
V _{OH}		V _{CC} =12V, I _{SOURCE} =50mA	11.2			V
	Output Voltage High	V _{CC} =6V, I _{SOURCE} =30mA	3.5			V
V _{OL}	Output Voltage Low	V _{CC} =12V, I _{SINK} =50mA			1	V
V OL	Output Voltage Low	V _{CC} =6V, I _{SINK} =30mA			1.2	V
Tr	Rising Time	$T_A=25^{\circ}C; C_L=5nF, V_{CC}=12V$		150	175	ns
Tf	Falling Time	$T_A=25^{\circ}C; C_L=5nF, V_{CC}=12V$		150	175	ns

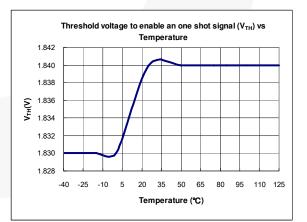

V_{CC} Section

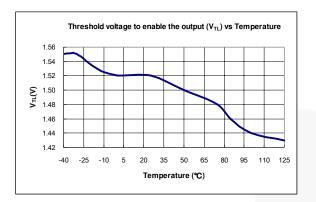

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
V _{OP}	Continuously Operating Voltage				20	V
I _{CC_OP}	Operating Current	V_{DD} =12V, Output=open, DET=50KHz, IN-=IN+=open, R _T =12K Ω		1.7	4.0	mA
V _{TH(ON)}	Start Threshold			6.0	6.3	V
V _{TH(OFF)}	Minimum Operating Voltage		4.8	5.1		V

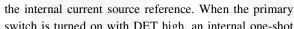



SG6203


TYPICAL CHARACTERISTICS







SG6203

is greatly reduced.

switch is turned on with DET high, an internal one-shot timer outputs high for a duration proportional to the R_T resistor. The duration of this one-shot signal can be expressed as:

A resistor from the RT pin to ground is used to determine

Synchronous Rectifier Controller for Flyback Converter

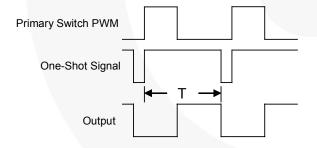
The DET pin provides on/off information of the primary

switch. As shown in the following reference circuits, one

diode connected between the DET pin and the secondary

winding of the transformer is used to get this information.

Low DET voltage level indicates the secondary rectifier is


conducted; therefore, the synchronous MOSFET should be turned on. The voltage on DET pin stays high when the primary switch is conducting and the synchronous

MOSFET should be turned off. This innovative feature

requires no auxiliary winding and the circuit complexity

Anticipation and Phase Lock Loop

$$T_{RT} = \frac{15 \times R_T(K\Omega)}{24} (\mu s)$$
(1)

The on-time of the synchronous MOSFET is obtained by subtracting the on-time of the primary switch from the one-shot signal duration. If the resistor is too small, the synchronous MOSFET may be turned off when the secondary rectifier is still conducting, which decreases system efficiency. If the resistor is too large, the output is shut off immediately once DET gets high. In SG6203, an internal phase locked loop modulates the duration of the internal one-shot signal to maintain a suitable dead time between the primary switch and the synchronous MOSFET. The duration of the one-shot signal can be extended 80% compared with the original value decided by R_T resistor.

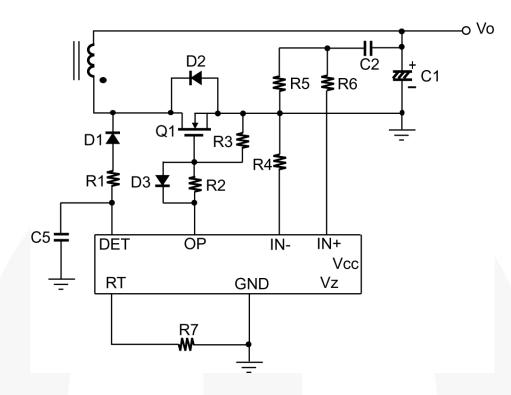
Current Sense

In discontinuous conduction mode, the secondary rectifier turns off before the next switching cycle of the primary switch. Once the secondary rectifier is off, the synchronous MOSFET must be turned off to prevent the reverse energy flow. Therefore, a zero current crossing detector is needed when the converter is operated under DCM. The SG6203 provides two configurations to achieve this: output capacitor ESR method (*reference Circuit-A*) and current-sensing resistor method (*reference Circuit-B*). When the secondary rectifier is turned off, the voltage on IN+ is lower than that of IN-. Once this happens, the driving signal for the synchronous MOSFET is turned off.

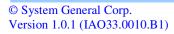
Under-Voltage Lockout (UVLO)

The SG6203 has an internal UVLO circuit with hysteresis. The IC is turned on if V_{CC} is higher than 6V. Once turned on, SG6203 is turned off if V_{CC} is lower than 5.1V. When the flyback output voltage is higher than 18V, the VZ pin can be used to provide a stable 18V to VCC pin.

SYSTEM GENERAL

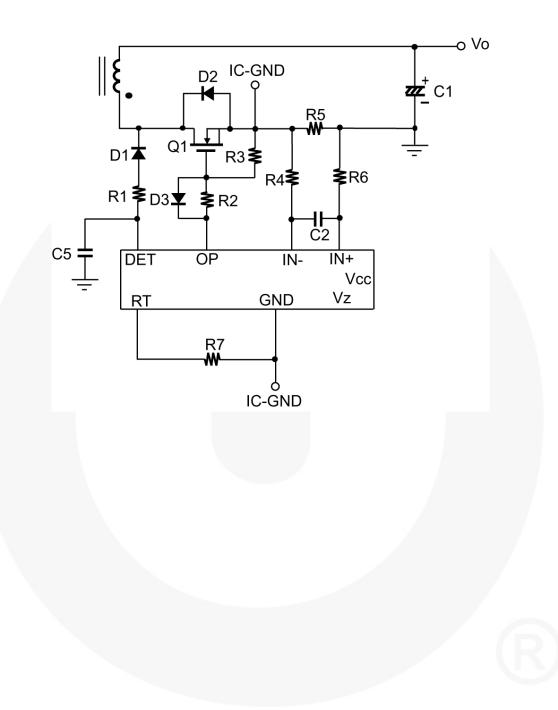

Synchronization

OPERATION DESCRIPTION

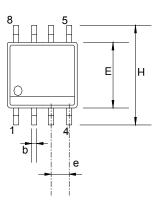

SG6203

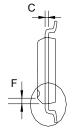
REFERENCE CIRCUIT-A

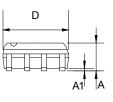
BOM

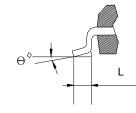

Ref Des	Part Number	Description
C2		0.1µF
C5		22pF
D1	FR102	100V/1A
D2	SB1100	100V/1A
D3	1N4148	100V/0.2A
Q1	PSMN015-110P	110V/75A; 15mΩ
R1		2.2ΚΩ
R2		22Ω
R3		47ΚΩ
R4		1.8KΩ
R5		2ΚΩ
R6		0
R7		16.2KΩ

SG6203

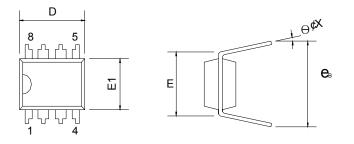

REFERENCE CIRCUIT-B

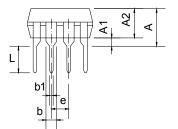





SG6203

PACKAGE INFORMATION 8 PINS-SOP(S)


Dimensions


Symbol	Millimeter			Inch	Inch		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
A	1.346		1.752	0.053		0.069	
A1	0.101		0.254	0.004		0.010	
b		0.406			0.016		
с		0.203			0.008		
D	4.648		4.978	0.183		0.196	
E	3.810		3.987	0.150		0.157	
е	1.016	1.270	1.524	0.040	0.050	0.060	
F		0.381X45°			0.015X45°		
Н	5.791		6.197	0.228		0.244	
L	0.406		1.270	0.016		0.050	
θ°	0°		8°	0°		8°	

SG6203

8PINS-DIP(D)

Dimension

Symbol	Millimeter			Inch		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
A			5.334			0.210
A1	0.381			0.015		
A2	3.175	3.302	3.429	0.125	0.130	0.135
b		1.524			0.060	
b1		0.457			0.018	
D	9.017	9.271	10.160	0.355	0.365	0.400
E		7.620			0.300	
E1	6.223	6.350	6.477	0.245	0.250	0.255
е		2.540			0.100	
L	2.921	3.302	3.810	0.115	0.130	0.150
e _B	8.509	9.017	9.525	0.335	0.355	0.375
θ°	0°	7°	15°	0°	7°	15°

SG6203

FAIRCHILD

SEMICONDUCTOR*

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[®] Build it Now[™] CorePLUS[™] CROSSVOLT[™] CTL[™] Current Transfer Logic[™] EcoSPARK[®] Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series [™] FACT[®] FAST[®] FastvCore[™] FPS[™] FRFET[®] Global Power Resource^{SII} Green FPS™ Green FPS™ e-Series™ GTO™ і-∟о™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR[®] PDP-SPM™ Power220®

Power247[®] POWEREDGE[®] Power-SPM[™] Programmable Active Droop[™] QFET[®] QS[™] QT Optoelectronics[™] Quiet Series[™] RapidConfigure[™] SMART START[™] SPM[®] STEALTH[™] SuperFET[™] SuperFET[™] SuperFET[™] SuperSOT[™]-3 SuperSOT[™]-6

SyncFET™ The Power Franchise® TinyBoost™ TinyBuck™ TinyBuck™ TinyPower™ TinyPower™ TinyPVM™ TinyVVire™ µSerDes™ UHC® UniFET™ VCX™

SuperSOT™-8

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.		

Rev. 131