

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PRODUCT DATASHEET

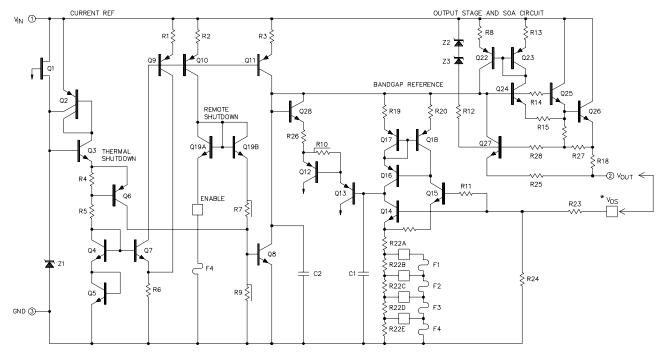
DESCRIPTION

SG78xxA/SG78xx series of fixed-voltage capability with up to 1.5A of load current and input voltage up to 50V to set the output voltages to within $\pm 1.5\%$ of nominal on the SG78xxA series, ±2.0% on the SG78xx series. The SG78xxA regulation diode references, such as drift in output TO-3, TO-39 and LCC packages. voltage and large changes in the line and load regulation.

All protective features of thermal positive regulators offer self contained, shutdown, current limiting, and safe-area control have been designed into these units and since these regulators require only a (SG78xxA series only). These units small output capacitor for satisfactory feature a unique on-chip trimming system performance, ease of application is assured. designed as fixed-voltage Although regulators, the output voltage can be increased through the use of a simple versions also offer much improved line voltage divider. The low quiescent drain characteristics. current of the device insures good regulation Utilizing an improved bandgap reference when this method is used. Product is design, problems have been eliminated available in hermetically sealed TO-257 that are normally associated with the Zener (both case grounded 'G' and isolated 'IG'),

IMPORTANT: For the most current data, consult *MICROSEMI*'s website: http://www.microsemi.com

KEY FEATURES


- Output Voltage Set Internally to ±1.5% on SG78xxA
- Input Voltage Range to 50V max. on SG78xxA
- Two Volt Input-Output Differential
- **Excellent Line and Load Regulation**
 - Foldback Current Limiting
- Thermal Overload Protection
- Voltages Available: 5V, 12V, 15V
- Contact Factory for Other Voltage Options
- Available in Surface Mount Package

HIGH RELIABILITY FEATURES - SG78xxA/78xx

- Available to MIL-STD 883, ¶ 1.2.1
- MIL-M38510/10702BXA JAN7805T
- MIL-M38510/10703BXA JAN7812T
- MIL-M38510/10704BXA JAN7815T
- MIL-M38510/10706BYA JAN7805K
- MIL-M38510/10707BYA JAN7812K
- MIL-M38510/10708BYA JAN7815K
- Radiation Data Available
- MSC-AMSG level "S" Processing Available
- Available to DSCC
 - Standard Microcircuit Drawing (SMD)

PRODUCT HIGHLIGHT

SCHEMATIC DIAGRAM

* For normal operation the (V_{os}) sense pin must be externally connected to the load.

PRODUCT DATASHEET

ABSOLUTE MAXIMUM RATINGS

Device Output Voltage	Input Voltage	Input Voltage (Transient)(Note 3)	Input Voltage Differential (Output Shorted to Ground)
5V	35V	50V	35V
12V	35V	50V	35V
15V	35V	50V	35V
Operating Junction Temper	ature		1

Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of specified terminal.

Note 3: Operation at high input voltages is dependent upon load current. When load current is less than 5mA, output will rise out of regulation as inputoutput differential increases beyond 30V. Note also from figure 1, that maximum load current is reduced at high voltages. The 50V input rating of the SG78xxA series refers to ability to withstand high line or transient conditions without damage. Since the regulator's maximum current capability is reduced, the output may fall out of regulation at high input voltages under nominal loading.

THERMAL DATA

THERMAL RESISTANCE-JUNCTION TO CASE, $ heta_{ extsf{JC}}$	3.0°C/W		
THERMAL RESISTANCE-JUNCTION TO $f A$ MBIENT, $f heta_{JA}$	35°C/W		
TO-39 3-Pin Metal Can			
THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	15°C/W		
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}	120°C/V		
THERMAL RESISTANCE-JUNCTION TO CASE, θ _{JC}	3.5°C/W		
THERMAL RESISTANCE-JUNCTION TO CASE, $\theta_{ m JC}$ THERMAL RESISTANCE-JUNCTION TO AMBIENT, $\theta_{ m JA}$	3.5°C/W 42°C/W		
<u> </u>			
TO-257 3-Pin Hermetic (Isolated)			
	4.0°C/W		
THERMAL RESISTANCE-JUNCTION TO CASE, $ heta_{ extsf{JC}}$			

Junction Temperature Calculation: $T_J = T_A + (P_D x \theta_{JA})$.

THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC} THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{JA}

The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

35°C/W

120°C/W

PRODUCT DATASHEET

CHARACTERISTIC CURVES

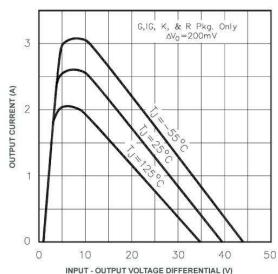


Figure 1 – Peak Output Current vs.
Input – Output Differential

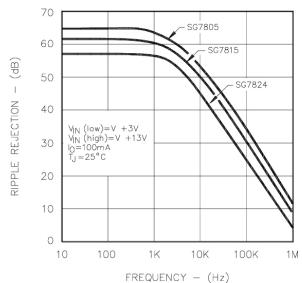


Figure 3 - Ripple Rejection vs. Frequency

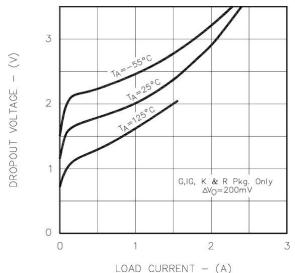


Figure 2 – Minimum Input – Output Voltage vs.
Load Current

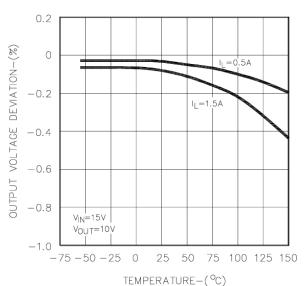
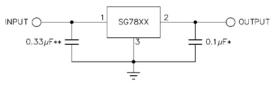



Figure 4 – Temperature Coefficient of Output Voltage

PRODUCT DATASHEET

APPLICATIONS

- * INCREASING VALUE OF OUTPUT CAPACITOR IMPROVES SYSTEM TRANSIENT RESPONSE
- ** REQUIRED ONLY IF REGULATOR IS LOCATED AN APPRECIABLE DISTANCE FROM POWER SUPPLY FILTER

Figure 5 - Fixed Output Regulator

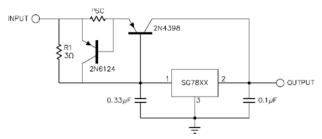


Figure 7 - High Output Current, Short Circuit Protected

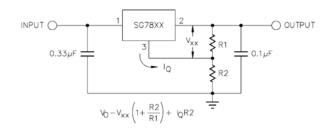


Figure 6 - Circuit for Increasing Output Voltage

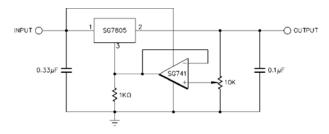


Figure 8 – Adjustable Output Regulator, 7V to 30V

RECOMMENDED OPERATING CONDITIONS

Parameter	SG7	8xx / 78	κxΑ	Units
Parameter	Min	Тур	Max	Ullits
Operating Junction Temperature Range (Note 2)			150	°C

Note 2: Range over which the device is functional.

PRODUCT DATASHEET

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG7805A / SG7805 with -55°C \leq T_A \leq 125°C, V_{IN} = 10V, I_O = 500mA for the K, G and IG – Power Packages, I_O = 100mA for the T and L packages, C_{IN} = 0.33 μ F, and C_{OUT} = 0.1 μ F. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

Devemeter	Test Conditions	SG7805A			SG7805			Units
Parameter	rest Conditions		Тур	Max	Min	Тур	Max	
Output Voltage	T _J = 25°C	4.92	5.00	5.08	4.80	5.00	5.20	V
Line Regulation (Note 1)	$V_{IN} = 7.5V \text{ to } 20V, T_J = 25^{\circ}C$		5	25		5	25	mV
	$V_{IN} = 8V \text{ to } 12V, T_J = 25^{\circ}C$		2	12		2	25	mV
Load Regulation (Note 1)	Power Pkgs: I_O = 5mA to 1.5A, T_J = 25°C		15	50		15	50	mV
	$I_{\rm O}$ = 250mA to 750mA, $T_{\rm J}$ = 25°C		5	25		5	25	mV
	T – Pkg: I_0 = 5mA to 500mA, T_J = 250°C		5	25		20	25	mV
Total Output Voltage	VIN = 8V to 20V							
Tolerance	Power Pkgs: I_0 = 5mA to 1.0A, P \leq 20W	4.85	5.00	5.15	4.65	5.00	5.35	V
	T – Pkg: I_0 =5mA to 500mA, P \leq 20W	4.85	5.00	5.15	4.65	5.00	5.35	V
Quiescent Current	Over Temperature Range			7			7	mA
	$T_J = 25^{\circ}C$		4	6		4	6	mA
Quiescent Current Change	With Line: V _{IN} = 8V to 25V			8.0			0.8	mA
	With Load: I_0 = 5mA to 1.0A (Power Pkgs.)			0.5			0.5	mA
	$I_0 = 5 \text{mA to } 500 \text{mA (T)}$			0.5			0.5	mA
Dropout Voltage	ΔV_0 = 100mV, T_J = 25°C							
	Power Pkgs: I_0 = 1.0A, T-Pkg: I_0 = 500mA		2	2.5		2	2.5	V
Peak Output Current	Power Pkgs: $V_{IN} = 10V$, $T_J = 25$ °C	1.5	2.0	3.3	1.5	2.0	3.3	Α
	$T - Pkg: V_{IN} = 10V, T_{J} = 25^{\circ}C$	0.5	1.0	2.0	0.5	1.0	2.0	Α
Short Circuit Current	Power Pkgs: V_{IN} = 35V, T_J = 25°C			1.2			1.2	Α
	$T - Pkg: V_{IN} = 35V, T_{J} = 25^{\circ}C$			0.7			0.7	Α
Ripple Rejection	$\Delta V_{IN} = 10V$, f = 120Hz, $T_{J} = 25$ °C	68			68			dB
Output Noise Voltage (rms)	f = 10Hz to 100kHz (Note 2)			40			40	μV/V
Long Term Stability	1000 hours @ T _J = 125°C		20			20		mV
Thermal Shutdown	$I_O = 5mA$		175			175		°C

Note 1: All regulation tests are made at constant junction temperature with low duty cycle testing.

2: This test is guaranteed but is not tested in production.

PRODUCT DATASHEET

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG7812A / SG7812 with -55°C \leq T_A \leq 125°C, V_{IN} = 19V, I_O = 500mA for the K, G and IG – Power Packages, I_O = 100mA for the T and L packages, C_{IN} = 0.33 μ F, and C_{OUT} = 0.1 μ F. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

Devemeter	Test Conditions	SG7812A			SG7812			Units
Parameter	rest Conditions		Тур	Max	Min	Тур	Max	
Output Voltage	T _J = 25°C	11.8	12.0	12.2	11.5	12.0	12.5	V
Line Regulation (Note 1)	V _{IN} = 14.5V to 30V, T _J = 25°C		12	60		12	120	mV
	V _{IN} = 16V to 22V, T _J = 25°C		6	30		6	60	mV
Load Regulation (Note 1)	Power Pkgs: I_0 = 5mA to 1.5A, T_J = 25°C		28	80		28	120	mV
	$I_0 = 250 \text{mA} \text{ to } 750 \text{mA}, T_J = 25 ^{\circ}\text{C}$		10	40		10	60	mV
	T – Pkg: I_0 = 5mA to 500mA, T_J = 25°C		10	40		10	60	mV
Total Output Voltage	V _{IN} = 15.5V to 27V							
Tolerance	Power Pkgs: I_0 = 5mA to 1.0A, P \leq 20W	11.7	12.0	12.3	11.4	12.0	12.6	V
	T – Pkg: I_0 = 5mA to 500mA, P \leq 2W	11.7	12.0	12.3	11.4	12.0	12.6	V
Quiescent Current	Over Temperature Range			7			7	mA
	T _J = 25°C		4	6		4	6	mA
Quiescent Current Change	With Line: V _{IN} = 15V to 30V			0.8			0.8	mA
	With Load: I_0 = 5mA to 1.0A (Power Pkgs.)			0.5			0.5	mA
	I _O = 5mA to 500mA (T)			0.5			0.5	mA
Dropout Voltage	$\Delta V_{O} = 100 \text{mV}, \text{ TJ} = 25 ^{\circ}\text{C}$							
	Power Pkgs: I_0 = 1.0A, T – Pkg: I_0 = 500mA		2	2.5		2	2.5	V
Peak Output Current	Power Pkgs: T _J = 25°C	1.5	2.0	3.3	1.5	2.0	3.3	Α
	$T - Pkg: T_J = 25^{\circ}C$	0.5	1.0	1.7	0.5	1.0	1.7	Α
Short Circuit Current	Power Pkgs: V_{IN} = 35V, T_J = 25°C			1.2			1.2	Α
	$T - Pkg: V_{IN} = 35V, T_{J} = 25^{\circ}C$			0.7			0.7	Α
Ripple Rejection	$\Delta V_{IN} = 10V$, f = 120Hz, $T_{J} = 25$ °C	61			61			dB
Output Noise Voltage (rms)	f = 10Hz to 100kHz (note 2)			40			40	μV/V
Long Term Stability	1000 hours @ T _J = 125°C		48			48		mV
Thermal Shutdown	$I_O = 5mA$		175			175		°C

Note 1: All regulation tests are made at constant junction temperature with low duty cycle testing.

2: This test is guaranteed but is not tested in production.

PRODUCT DATASHEET

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG7815A / SG7815 with -55°C \leq T_A \leq 125°C, V_{IN} = 23V, I_O = 500mA for the K, G and IG – Power Packages, I_O = 100mA for the T and L packages, C_{IN} = 0.33 μ F, and C_{OUT} = 0.1 μ F. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

Parameter	Test Conditions	SG7815A			SG7815			Units
Parameter	rest Conditions		Тур	Max	Min	Тур	Max	
Output Voltage	T _J = 25°C	14.8	15.0	15.2	14.4	15.0	15.6	V
Line Regulation (Note 1)	V _{IN} = 17.5V to 30V, T _J = 25°C		15	75		15	150	mV
	V_{IN} = 20V to 26V, T_J = 25°C		8	40		8	75	mV
Load Regulation (Note 1)	Power Pkgs: I_0 = 5mA to 1.5A, T_J = 25°C		30	100		30	150	mV
	$I_{\rm O}$ = 250mA to 750mA, $T_{\rm J}$ = 25°C		12	50		12	75	mV
	T – Pkg: I_0 = 5mA to 500mA, T_J = 25°C		12	50		12	75	
Total Output Voltage	$V_{IN} = 18.5V \text{ to } 30V$							
Tolerance	Power Pkgs: I_0 = 5mA to 1.0A, P \leq 20W	14.6	15.0	15.4	14.3	15.0	15.7	V
	T – Pkg: I_0 = 5mA to 500mA, P \leq 2W	14.6	15.0	15.4	14.3	15.0	15.7	V
Quiescent Current	Over Temperature Range			7			7	mA
	$T_J = 25^{\circ}C$		4	6		4	6	mA
Quiescent Current Change	With Line: $V_{IN} = 18.5V$ to 30V			8.0			0.8	mA
	With Load: I _O = 5mA to 1.0A (Power Pkgs)			0.5			0.5	mA
	$I_0 = 5mA \text{ to } 500mA \text{ (T)}$			0.5			0.5	mA
Dropout Voltage	$\Delta V_{O} = 100 \text{mV}, T_{J} = 25 ^{\circ}\text{C}$							
	Power Pkgs: I_0 = 1.0A, T – Pkg: I_0 = 500mA		2	2.5		2	2.5	V
Peak Output Current	Power Pkgs: T _J = 25°C	1.5	2.2	3.3	1.5	2.2	3.3	Α
	$T - Pkg: T_J = 25^{\circ}C$	0.5	0.9	1.7	0.5	0.9	1.7	Α
Short Circuit Current	Power Pkgs: V_{IN} = 35V, T_J = 25°C			1.2			1.2	Α
	$T - Pkg: V_{IN} = 35V, TJ = 25^{\circ}C$			0.7			0.7	Α
Ripple Rejection	$\Delta V_{IN} = 10V$, f = 120Hz, $T_{J} = 25$ °C	60			60			dB
Output Noise Voltage (rms)	f = 10Hz to 100kHz (note 2)			40			40	μV/V
Long Term Stability	1000 hours @ TJ = 125°C		60			60		mV
Thermal Shutdown	$I_0 = 5mA$		175			175		

Note 1: All regulation tests are made at constant junction temperature with low duty cycle testing.

2: This test is guaranteed but is not tested in production.

NOTES

Page 8

Positive Fixed Voltage Regulator

PRODUCT DATASHEET

CONNECTION DIAGRAMS & ORDERING INFORMATION (SEE NOTES BELOW)

Package	Part No.	Ambient Temperature Range	Connection Diagram
	SG78xxAK/883B	-55°C to 125°C	
	SG7805AK/DESC	-55°C to 125°C	V _{IN.}
	SG7812AK/DESC	-55°C to 125°C	V IN
	SG7815AK/DESC	-55°C to 125°C	
3-Terminal TO-3 Metal Can	SG78xxAK	-55°C to 125°C	
K – Package	SG78xxK/883B	-55°C to 125°C	
_	JAN7805K	-55°C to 125°C	
	JAN7812K	-55°C to 125°C	V _{OUT}
	JAN7815K	-55°C to 125°C	Case is Ground
	SG78xxK	-55°C to 125°C	
	SG78xxAT/883B	-55°C to 125°C	
	SG7805AT/DESC	-55°C to 125°C	
	SG7812AT/DESC	-55°C to 125°C	
	SG7815AT/DESC	-55°C to 125°C	V _{IN} O
3-Pin TO-39 Metal Can	SG78xxAT	-55°C to 125°C	IN ()
T – Package	SG78xxT/883B	-55°C to 125°C	$V_{OUT} \bigcirc^2 \bigcirc^3 / GND$
Ğ	JAN7805T	-55°C to 125°C	1001
	JAN7812T	-55°C to 125°C	Case is Ground
	JAN7815T	-55°C to 125°C	
	SG78xxT	-55°C to 125°C	
	SG78xxAIG/883B	-55°C to 125°C	
	SG7805AIG/DESC	-55°C to 125°C	
	SG7812AIG/DESC	-55°C to 125°C	
3-Pin Hermetic TO-257	SG7815AIG/DESC	-55°C to 125°C	V _{OUT} GROUND
IG – Package (Isolated)	SG78xxAIG	-55°C to 125°C	V _{IN}
	SG78xxIG/883B	-55°C to 125°C	
	SG78xxIG	-55°C to 125°C	
	SG7805AL/DESC	-55°C to 125°C	0
	SG7812AL/DESC	-55°C to 125°C	3 2 1 20 19
	SG7815AL/DESC	-55°C to 125°C	N.C.)4 18 (N.C.
20-Pin Ceramic Leadless Chip	SG78xxL/883B	-55°C to 125°C	N.C. 05 17 V _{IN}
Carrier			N.C. 06 16 0 N.C.
L – Package			GND 07 15 Q V _o SENSE
L - 1 ackage			N.C. 08 14 N.C.
			0 1 2 0 0 5 0 5 0 2 > 2 > 2
	SG78xxAG/883B	-55°C to 125°C	See Notes 5 & 6
	SG7805AG/DESC	-55°C to 125°C	
	SG7812AG/DESC	-55°C to 125°C	V _{OUT}
3-Pin Hermetic TO-257	SG7815AG/DESC	-55°C to 125°C	GROUND V _{ss}
G – Package (Case is Ground)	SG78xxAG	-55°C to 125°C	
	SG78xxG/883B	-55°C to 125°C	Case is Ground
	SG78xxG	-55°C to 125°C	
	JG/OXXG	-33 6 10 123 6	

Note

- 1: Contact factory for JAN and DESC product availability.
- 2: All parts are viewed from the top.
- 3: "xx" to be replaced by output voltage of specific fixed regulator.
- 4: Some products will be available in hermetic flat pack (F). Consult factory for price and availability.
- 5: Both inputs and outputs must be externally connected together at the device terminals.
- 6: For normal operation, the V_{O} SENSE pin must be externally connected to the load.