imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SG901-1078 Miniature Wi-Fi Radio

Overview

The SG901-1078 WiFi module is a shielded and FCC certified version of the SG901-1071 Radio Module. It is optimized to simplify successful integration into systems requiring the latest performance with small size. This certified module is a highly integrated single chip based 802.11b/g/n WLAN radio for embedded, low-power and extremely small form factor mobile applications. The product conforms to the IEEE 802.11B, G, and N protocols operating in the 2.45GHz ISM frequency band supporting 802.11n modulations up to 72.2Mbps, all 802.11g OFDM modulations, and all mandatory 802.11b modulations.

The SG901-1078 is a fully integrated wireless radio including RF Synthesizer/VCO, high-speed data converters, digital baseband processor, onboard MAC and PHY processors, Power Management, Power Amplifier, and LNA.

An on-board EEPROM stores calibration data for alignment-free integration. No customer calibration required.

An on-board crystal and filter simplify system integration. The addition of 1.8V, 3.3V, and VIHO supplies, Antenna, and host communication, provides a complete WiFi solution.

Host control is provided by either an SDIO or SPI interface.

Shield not shown

Features

- FCC Module Certification
- Small Footprint (21.3 by 13.5mm)
- Factory Calibrated
- RoHs Compliant
- Fully Integrated 802.11 System Solution
- Ultra Low Current Consumption, 2.5 m A DITM = 1
- Fully Compliant with the IEEE 802.11B,G, and N WLAN Standards
- Support for 802.11n Modulations up to 72.2Mbps, and all 802.11g and Mandatory 802.11b Modulations
- Intelligent Power Control, Including 802.11 Power Save Mode
- Supports SPI Interface and SDIO Interface
- Factory Support for Linux 2.6/Android, Windows CE
- Source Code Available for porting to RTOS or Custom OS
- Hardware driver is provided under GPL
- Flexible I/O Voltage

Applications

- Hand-held Devices
- Embedded Systems
- Portable Systems
- · Point of Sale terminals
- Personal Digital Assistants (PDA)
- Cameras
- Cable Replacement

Ordering Information

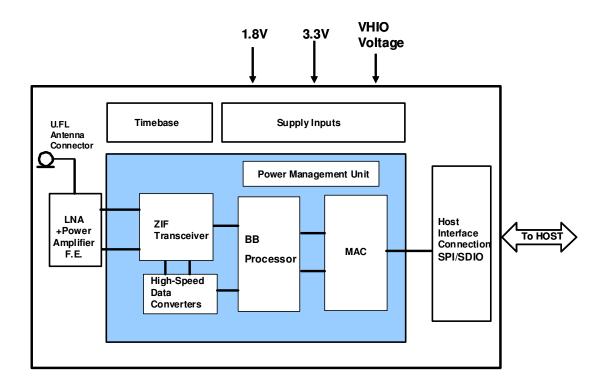
Packaging	Temp Range	Part Number
Tape and Reel	Extended	SG901-1078-ET-TR
Bulk	Extended	SG901-1078-ET-BLK
Tape and Reel	Commercial	SG901-1078-CT-TR
Bulk	Commercial	SG901-1078-CT-BLK

Evaluation Kit Available

This EVK supports embedded software development. Uses the SG901-1071 module.

EVK for 1071

SG923-0007


1-321-255-0515

WWW.SAGRAD.COM

Sagrad

SG901-1078 ADVANCE INFORMATION

Block Diagram

FCC Certification

		Comment	
FCC ID	TB obtained		
W1038		Pulse Antennas 2.4 – 2.5 GHz with Reverse SMA connector	
Certified for use with these Antennas	W1037	Pulse Antennas 2.4 – 2.5 GHz with Reverse SMA connector	
	MLPV2400NGP	PCTEL Ant 2.4 – 2.5 GHz with reverse SMA	
	13018-1	Beijing Evercommunication Ant 2.4 – 2.5 GHz with IPX (U.FL Compatible, recommended for cost sensitive applications)	
Other Antennas		Additional Antennas may be added to the approval list at additional cost. Contact Sagrad for additional information	

1-321-255-0515

WWW.SAGRAD.COM

General Electrical Specifications

Parameter		Test Condition / Comment	Min.	Тур.	Max.	Units
Absolute Maximum R	atings					
3.3V Supply			-0.3		3.6	V
VLDO Supply			-0.3		2.5	V
Operating Conditions	and Input Power Specific	cations	·			
Operating Temperature Range		ET Version (Extended Temperature)	-30		85	°C
		CT Version (Commercial Temperature)	0		70	°
	Input Supply Voltage	3.3V Supply input	2.7	3.3	3.6	V
	Standby Mode Current	32.768kHz Mode		270		uA
3.3V Supply	Power Save Mode Current	DTIM = 1		2.5		mA
	Peak TX Current			270		mA
	Peak RX Current	Processing Beacons		82		mA
	Peak RX Current	Processing OFDM Packets		135		mA
	Wake up Time	From 32.768KHz Mode		5		mS
Power Save Mode Settling Times	Ramp up	To Processing Beacons		360		uS
Setting Times	Ramp Down	To Stand By 32.768KHz mode		760		uS
	Input Supply Voltage	VHIO input supply determines Host CMOS 1.7		3.3	V	
VHIO Supply	Input Supply Current	VHIO = 1.8V		1		mA
	Standby Mode Current	VHIO = 1.8V 1		100		uA
VLDO Supply	Input Supply Voltage	Required Internal regulator supply input	1.45		2.0	V
Input Voltage Levels	VIL		-0.3		0.25VHIO	V
	VIH		0.625VHIO		VHIO+0.3	V
Output Voltage Levels	VOL	IOL = 8.0mA			0.4	V
	VOH	IOH = -8.0mA	0.75VHIO		VHIO	V
Input Capacitance			1.0		5.0	pF

WWW.SAGRAD.COM

RF Characteristics (Max and Min based on temperature range)

Parameter		Test Condition / Comment	Min.	Тур.	Max.	Units
Antenna Port Impedance				50		Ohms
Antenna Input Return Loss		CH1 to CH14	-9.5		-14	dB
	11b, 1Mbps		-97	-96.3	-95	dBm
	11b, 2 Mbps		-94	-93.5	-91	dBm
	11b, 5.5 Mbps		-93	-91	-88	dBm
	11b, 11 Mbps		-89	-86.7	-85	dBm
	11g, 9Mbps		-92	-89.6	-88	dBm
RX Sensitivity	11g, 18Mbps		-87	-85.9	-84	dBm
nx Sensitivity	11g, 36Mbps		-80	-78.6	-77	dBm
	11g, 54Mbps		-74	-72.4	-70	dBm
	11n, MCS1			-86		dBm
	11n, MCS3			-80		dBm
	11n, MCS5			-72		dBm
	11n, MCS7			-69		dBm
Channel to Channel De-sensitivity	CH1 to 14	11g, 54Mbps 10% PER	-0.7		0.7	dB
Maximum Input Signal	CH7	11g, 54Mbps	-19		-16	dBm
	1Mbps			50		
	11Mbps			47		
Adjacent Channel	9Mbps			25		dB
Rejection	54Mbps			13		dB
	MCS1			24		dB
	MCS7			5		dB
TX Output Power	11b, 1Mbps		15	16.5	19.1	dBm
	11b, 11Mbps	@802.11b spectral mask	15.5	16.2	19.4	dBm
	11g, 9Mbps	@802.11g spectral mask	17	18.2	19.5	dBm
	11g, 54Mbps	EVM = -27dB, 4.5%	11.7	13.4	15.1	dBm
	802.11n MCS1	@802.11n spectral mask		17		dBm
	802.11n MCS7	EVM = -27dB		13		dBm

1-321-255-0515

WWW.SAGRAD.COM

Pinout List

SIGNAL NAME	PIN NUMBER	DESCRIPTION		NOTES	
RF Pins					
2G4_RF	U.FL Connector			Hirose Electrical PN U.FL-R-SMT(10)	
2G4_RF	11	Optional PAD, Factory	enabled only	Careful Layout for this RF Pad and nearby ground	
Serial Interface Pins (VHIO Domain, logic levels compatible with			n the VHIO (Pin 26) input voltage)		
SDCMD	21	SPI MOSI (input)	SDIO CMD	VHIO Domain	
SDCLK	22	SPI Clock Input	SDIO CLK	VHIO Domain	
SDD0	20	SPI MISO (output)	SDIO Data 0	VHIO Domain	
SDD1	19	SPI: Interrupt Output	SDIO Data 1	VHIO Domain	
SDD2	18		SDIO Data 2	VHIO Domain	
SDD3	17	SPI Chip Select Input	SDIO Data 3	VHIO Domain	
Control Pins					
POWERUP	4	Power Up Enable (from Host)		VLDO Domain with internal pull up High = operating, Low = off	
RSTn	25	Reset Input		VHIO Domain – Active Low reset	
CLK32K	27	32.768 kHz Sleep Clock Input		VHIO Domain	
Power and Ground Pins					
VHIO	26	Supply Voltage for I/O's		1.7 to 3.3V, Internally decoupled with a 0.1uF capacitor	
VLDO	9	External regulator supply input		1.45 to 2.0V, Internally decoupled with a 10uF capacitor	
3.3V	8	RF PA supply		2.7 to 3.3V, Internally decoupled with a 10uF capacitor	
GND	1,2,3,5,6,7,10, 12,13,14,15,16, 23,24,28,Paddle	Ground Connections			

1-321-255-0515

WWW.SAGRAD.COM

Software Support

The 1071 and 1078 modules are supported through highly portable software. The hardware drivers and Wi-Fi stack as provided is compatible with Linux kernel 2.6. The source code for the hardware abstraction is available under a GPL license and is available from Sagrad. The licensed Wi-Fi licensed stack available from Sagrad is provided in binary form without a license. Source code for the Wi-Fi stack is available to the customer. To obtain source code for the stack contact Sagrad sales at <u>www.sagrad.com</u>. Software and source code are available free of charge but require a software license agreement for the Wi-Fi stack source.

In almost all cases the GPL driver will need to be modified for the customer's specific hardware. The Wi-Fi stack will only need to be modified for compatibility to the customers OS and compiler. In many cases such as Linux near zero modification of the Wi-Fi stack will be required.

The Wi-Fi module/stack currently is only tested in client mode and is compatible with any access point that meets 802.11 standards. An access point mode code base is planned in the future.

The complete 802.11 stack requires about 350KB of space for the implementation of the entire specification. Extremely small versions can be created by knowledgeable customers but is a considerable task and requires detailed understanding of 802.11.

As a service to customers, Sagrad offers extended technical support on a fee basis.

1-321-255-0515

WWW.SAGRAD.COM

Software Details:

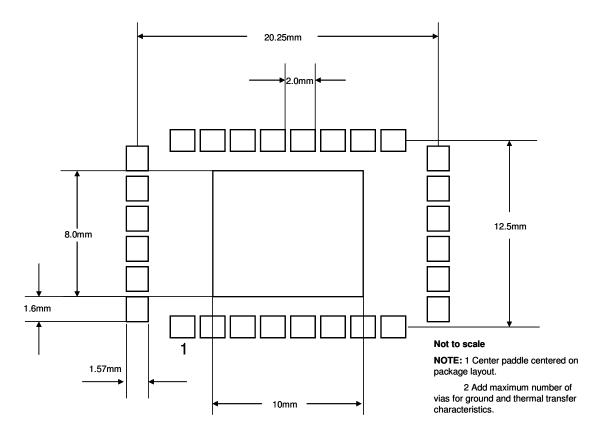
MAC

- Comprehensive MAC functionality according to IEEE 802.11-2007, including QoS traffic scheduling
- Supports the following optional IEEE 802.11n features:
- MPDU aggregation MSDU aggregation Immediate Block Acknowledgement PSMP MTBA RIFS L-SIG TXOP protection Link adaptation using MCS feedback

Encryption

- Hardware encryption according to IEEE 802.11-2007 and IEEE 802.11w/D10.0: WEP40/64 WEP104/128 CCMP (AES) TKIP BIP
- Hardware encryption support for SMS4 to support WAPI
- Hardware encryption support for Cisco® CKIP

OS Support:


Windows Mobile 7 and 6.x, Windows CE 6.1 and 5, Linux v2.6, Android

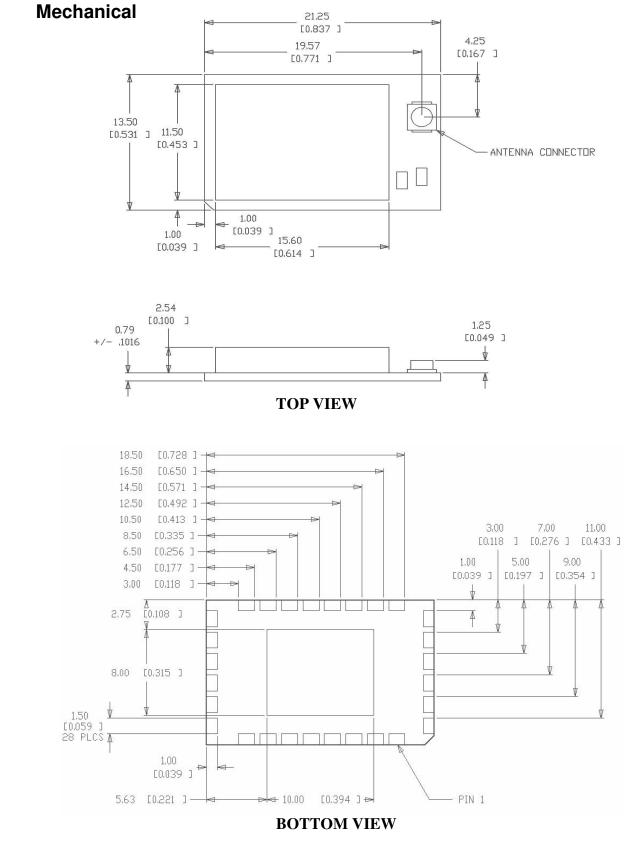
1-321-255-0515

WWW.SAGRAD.COM

Recommended Layout

PCB design requires detailed review of the center exposed pad. This pad requires good thermal conductivity. Soldering coverage should be maximized and checked via x-ray for proper design. There is a trade off in providing enough solder for conductivity, and too much which allows the module to "float" on the paddle creating reliability issues. Sagrad recommends two approaches, a large center via that allows excess soldering to flow down into the host PCB with smaller vias around it. Or many smaller vias with just enough space for the viscosity of the chosen solder/flux to allow some solder to flow into the smaller vias. Each of these approaches need to result in 60% or more full contact solder coverage on the paddle after reflow. Sagrad strongly encourages PCB layout teams to work with their EMS providers to insure vias and solder paste designs will result in satisfactory performance.

Note: Pin one is on the bottom left of this diagram.


This view is viewed from the top.

1-321-255-0515

WWW.SAGRAD.COM

1-321-255-0515

DOC#: SG914-0028 rev. 1.2

WWW.SAGRAD.COM

Sagraa

SG901-1078 ADVANCE INFORMATION

Packaging

The part comes packaged in Tape and Reel or bulk.

1-321-255-0515

WWW.SAGRAD.COM