Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China rfmd.com ## **Preliminary** # **SGA-0363(Z)** # DC to 5000 MHz, SILICON GERMANIUM CASCADABLE GAIN BLOCK APP. RFMD Green, RoHS Compliant, Pb-Free (Z Part Number) Package: SOT-363 #### **Product Description** The SGA-0363 is a high performance SiGe HBT MMIC Amplifier. A Darlington configuration featuring one-micron emitters provides high FT and excellent thermal perfomance. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in higher suppression of intermodulation products. Only two DC-blocking capacitors, a bias resistor and an optional RF choke are required for operation. #### **Features** - DC to 5000MHz Operation - Single Voltage Supply - Low Current Draw: 11mA at 2.5 V Typ. - High Output Intercept: 14dBm Typ. at 1950MHz #### **Applications** - PA Driver Amplifier - Cellular, PCS, GSM, UMTS - IF Amplifier - Wireless Data, Satellite | Parameter | Specification | | Unit | O and it is a | | |---------------------------------|---------------|-------|------|---------------|-----------------| | raiailletei | Min. | Тур. | Max. | UIIIL | Condition | | Output Power at 1dB Compression | | 2.3 | | dBm | 850MHz | | | | 2.3 | | dBm | 1950MHz | | | | 1.6 | | dBm | 2400 MHz | | Third Order Intercept Point | | 14.2 | | dBm | 850MHz | | | | 14.0 | | dBm | 1950MHz | | | | 13.1 | | dBm | 2400MHz | | Small Signal Gain | | 19.6 | | dB | 850MHz | | | | 17.2 | | dB | 1950MHz | | | | 16.2 | | dB | 2400MHz | | 3dB Bandwidth | | 5000 | | MHz | | | Input VSWR | | 1.8:1 | | | DC to 4500 MHz | | Output VSWR | | 1.7:1 | | | DC to 4500MHz | | Reverse Isolation | | 24.0 | | dB | 850MHz | | | | 22.8 | | dB | 1950MHz | | | | 22.1 | | dB | 2400 MHz | | Noise Figure ^[1] | | 3.0 | | dB | 1950MHz | | Device Operating Voltage | | 2.5 | | V | | | Device Operating Current | 9 | 11 | 13 | mA | | | Thermal Resistance | | 255 | | °C/W | junction - lead | $\textbf{Test Conditions: V}_S = \textbf{5V}, \textbf{I}_D = \textbf{11} \textbf{mA Typ., T}_L = 25 \text{ °C. OIP3 Tone Spacing} = \textbf{1MHz}, \textbf{P}_{OUT} \text{ per tone} = -\textbf{12} \text{ dBm}, \textbf{R}_{BIAS} = 220 \Omega, \textbf{Z}_S = \textbf{Z}_L = 50 \Omega$ ### **Preliminary** #### **Absolute Maximum Ratings** | Parameter | Rating | Unit | |--|------------|------| | Device Current (I _D) | 22 | mA | | Device Voltage (V _D) | 6 | V | | RF Input Power | -5 | dBm | | Junction Temp (T _J) | +150 | °C | | Operating Temp Range (T _L) | -40 to +85 | °C | | Storage Temp | +150 | °C | Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one. Bias Conditions should also satisfy the following expression: $I_DV_D\!<\!(T_J\!-\!T_L)/R_{TH},j\!-\!I$ #### Caution! ESD sensitive device. Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied. RoHS status based on EU Directive 2002/95/EC (at time of this document revision). The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice. | Dawanastan | | Specification | | Unit | Oandikian | | |------------------------|------|---------------|------|------|---|--| | Parameter | Min. | Тур. | Max. | Unit | Condition | | | Gain | | 20.4 | | dB | 100 MHz | | | | | 20.0 | | dB | 500MHz | | | | | 19.6 | | dB | 850MHz | | | | | 17.2 | | dB | 1950MHz | | | | | 16.2 | | dB | 2400MHz | | | | | 13.8 | | dB | 3500MHz | | | Output IP ₃ | | 14.8 | | dBm | 100 MHz, Tone spacing=1MHz, P _{OUT} per tone=
-12 dBm | | | | | 14.5 | | dBm | 500 MHz, Tone spacing=1MHz, P _{OUT} per tone=
-12dBm | | | | | 14.2 | | dBm | 850 MHz, Tone spacing=1MHz, P _{OUT} per tone=
-12dBm | | | | | 14.0 | | dBm | 1950MHz, Tone spacing=1MHz, P _{OUT} per tone=
-12dBm | | | | | 13.1 | | dBm | 2400MHz, Tone spacing=1MHz, P _{OUT} per tone=
-12dBm | | | | | 11.5 | | dBm | 3500 MHz, Tone spacing=1MHz, P _{OUT} per tone=
-12dBm | | | Output P1dB | | 3.2 | | dBm | 100 MHz | | | | | 2.9 | | dBm | 500MHz | | | | | 2.3 | | dBm | 850MHz | | | | | 2.3 | | dBm | 1950MHz | | | | | 1.6 | | dBm | 2400MHz | | | | | 0.8 | | dBm | 3500MHz | | | Input Return Loss | | 9.3 | | dB | 100 MHz | | | | | 9.4 | | dB | 500MHz | | | | | 9.4 | | dB | 850MHz | | | | | 10.4 | | dB | 1950MHz | | | | | 10.8 | | dB | 2400MHz | | | | | 11.3 | | dB | 3500MHz | | | Reverse Isolation | | 23.9 | | dB | 100MHz | | | | | 23.9 | | dB | 500MHz | | | | | 24.0 | | dB | 850MHz | | | | | 22.8 | | dB | 1950MHz | | | | | 22.1 | | dB | 2400MHz | | | | | 20.1 | | dB | 3500 MHz | | | Noise Figure | | 2.9 | | dB | 100 MHz, Z_S =50 Ω | | | | | 2.8 | | dB | 500MHz, Z _S =50Ω | | | | | 3.0 | | dB | 850MHz, $Z_S = 50\Omega$ | | | | | 3.0 | | dB | 1950MHz, $Z_S = 50\Omega$ | | Test Conditions: I_D=8mA, unless otherwise noted rfmd.com | Function | Description | |----------|--| | RF IN | RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation. | | GND | Connection to ground. Use via holes for best performance to reduce lead inductance as close to ground leads as possible. | #### Pin 3 1, 2, 4, 5 **RF OUT/BIAS** RF output and bias pin. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper oper-6 ### **Suggested Pad Layout** board thicknesses and dielectric contants. 3. We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31 mil thick Getek with 1 ounce copper on both sides. ### **Package Drawing** Dimensions in inches (millimeters) Refer to drawing posted at www.rfmd.com for tolerances. ### **Application Schematic** | Reference | Frequency (Mhz) | | | | | | |----------------|-----------------|--------|-------|-------|-------|--| | Designator | 500 | 850 | 1950 | 2400 | 3500 | | | C _B | 220 pF | 100 pF | 68 pF | 56 pF | 39 pF | | | C _D | 100 pF | 68 pF | 22 pF | 22 pF | 15 pF | | | L _c | 68 nH | 33 nH | 22 nH | 18 nH | 15 nH | | | Recommended Bias Resistor Values for I_D =11mA R_{BIAS} =(V_S - V_D) / I_D | | | | | | |--|-----|-------|-----|------|--| | Supply Voltage(V _S) | 5 V | 7.5 V | 9 V | 12 V | | | R_{BIAS} 220 Ω 470 Ω 620 Ω 910 Ω | | | | | | | Note: R _{plas} provides DC bias stability over temperature. | | | | | | ## **Evaluation Board Layout** #### **Mounting Instructions** - 1. Use a large ground pad area near device pins 1, 2, 4, and 5 with many plated through-holes as shown. - 2. We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31 mil thick FR-4 board with 1 ounce copper on both sides. # Preliminary ### **Part Identification Marking** ### **Alternate Marking with Trace Code Only** ### **Ordering Information** | Part Number | Reel Size | Devices/Reel | |-------------|-----------|--------------| | SGA-0363 | 7'' | 3000 | | SGA-0363Z | 7" | 3000 |