

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

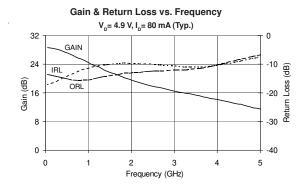
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Product Description

The SGA-6589 is a high performance SiGe HBT MMIC Amplifier. A Darlington configuration featuring 1 micron emitters provides high $F_{\scriptscriptstyle T}$ and excellent thermal perfomance. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in higher suppression of intermodulation products. Only 2 DC-blocking capacitors, a bias resistor and an optional RF choke are required for operation.

The matte tin finish on Sirenza's lead-free package utilizes a post annealing process to mitigate tin whisker formation and is RoHS compliant per EU Directive 2002/ 95. This package is also manufactured with green molding compounds that contain no antimony trioxide nor halogenated fire retardants.

SGA-6589

SGA-6589Z (P6) ROHS Compliant & Green Package

DC-3500 MHz, Cascadable SiGe HBT MMIC Amplifier

Product Features

- · Now available in Lead Free, RoHS Compliant, & Green Packaging
- · High Gain: 20 dB at 1950 MHz
- · Cascadable 50 Ohm
- Operates From Single Supply
- Low Thermal Resistance Package

Applications

- PA Driver Amplifier
- · Cellular, PCS, GSM, UMTS
- IF Amplifier
- · Wireless Data, Satellite

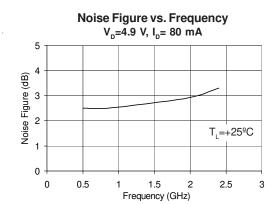
Symbol	Parameter	Units	Frequency	Min.	Тур.	Max.
G	Small Signal Gain	dB	850 MHz 1950 MHz 2400 MHz	23.0	25.5 20.0 18.2	28.1
P _{1dB}	Output Power at 1dB Compression	dBm	850 MHz 1950 MHz		21.5 19.0	
OIP ₃	Output Third Order Intercept Point	dBm	850 MHz 1950 MHz		32.5 32.0	
Bandwidth	Determined by Return Loss (>9dB)	MHz			4000	
IRL	Input Return Loss	dB	1950 MHz		13.1	
ORL	Output Return Loss	dB	1950 MHz		9.2	
NF	Noise Figure	dB	1950 MHz		3.0	
V _D	Device Operating Voltage	>		4.5	4.9	5.3
I _D	Device Operating Current	mA		72	80	88
R _{TH} , j-l	Thermal Resistance (junction to lead)	°C/W			97	
Test Co	Test Conditions: $V_s = 8 \text{ V}$ $I_p = 75 \text{ mA Typ.}$ OIP ₃ Tone Spacing = 1 MHz, Pout per tone = 0 dBm					

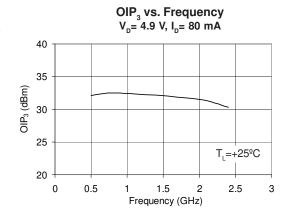
The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2001 Sirenza Microdevices, Inc.. All worldwide rights

 $Z_s = Z_l = 50 \text{ Ohms}$

= 25ºC

 $R_{BIAS} = 39 \text{ Ohms}$

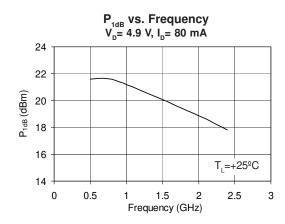

Test Conditions:

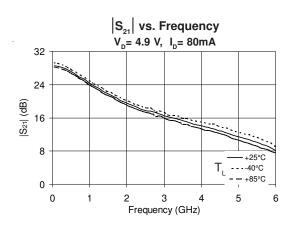


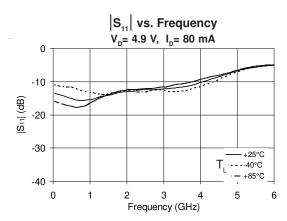
Typical RF Performance at Key Operating Frequencies

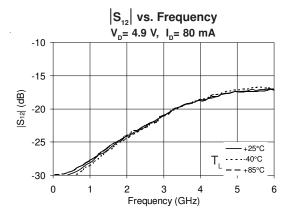
			Frequency (MHz)					
Symbol	Parameter	Unit	100	500	850	1950	2400	3500
G	Small Signal Gain	dB	28.4	27.1	25.2	19.8	18.2	15.1
OIP ₃	Output Third Order Intercept Point	dBm		32.1	32.5	32.0	30.3	
P _{1dB}	Output Power at 1dB Compression	dBm		21.6	21.5	19	17.8	
IRL	Input Return Loss	dB	13.9	15.0	15.6	13.1	12.4	11.4
ORL	Output Return Loss	dB	16.1	13.5	11.4	9.2	9.4	10.6
S ₁₂	Reverse Isolation	dB	30.3	29.8	28.7	24.3	23.1	19.2
NF	Noise Figure	dB		2.5	2.5	2.9	3.3	

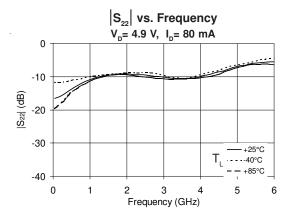
Test Conditions: $V_s = 8 \text{ V}$ $I_D = 80 \text{ mA}$ Typ.OIP $_3$ Tone Spacing = 1 MHz, Pout per tone = 0 dBm $R_{BIAS} = 39 \text{ Ohms}$ $T_L = 25^{\circ}\text{C}$ $Z_S = Z_L = 50 \text{ Ohms}$

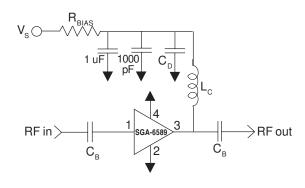


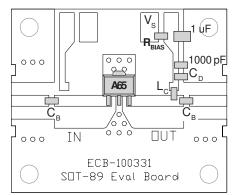

Absolute Maximum Ratings


Parameter	Absolute Limit
Max. Device Current (ID)	160 mA
Max. Device Voltage (V _D)	7 V
Max. RF Input Power	+16 dBm
Max. Junction Temp. (T _J)	+150°C
Operating Temp. Range (T _L)	-40°C to +85°C
Max. Storage Temp.	+150°C

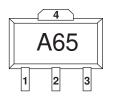

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.







 $^{^{*}\,\}text{Note: In the applications circuit on page 4, R}_{\text{\tiny BIAS}}\,\text{compensates for voltage and current variation over temperature.}$



Basic Application Circuit

Part Identification Marking

Caution: ESD sensitive Appropriate precautions in handling, packaging and testing devices must be observed.

See Application Note AN-075 for Package Outline Drawing

Application Circuit Element Values

Reference		Frequency (Mhz)					
Designator	500	850	1950	2400	3500		
C _B	220 pF	100 pF	68 pF	56 pF	39 pF		
C _D	100 pF	68 pF	22 pF	22 pF	15 pF		
L _c	68 nH	33 nH	22 nH	18 nH	15 nH		

Recommended Bias Resistor Values for I_p =80mA R_{BIAS} =(V_S - V_D) / I_D					
Supply Voltage(V _S)	6 V	8 V	10 V	12 V	
R _{BIAS} 12 Ω 39 Ω 62 Ω 91 Ω					
Note: R _{BIAS} provides DC bias stability over temperature.					

Mounting Instructions

- 1. Solder the copper pad on the backside of the device package to the ground plane.
- 2. Use a large ground pad area with many plated through-holes as shown.
- 3. We recommend 1 or 2 ounce copper. Measurement for this data sheet were made on a 31 mil thick FR-4 board with 1 ounce copper on both sides.

Pin #	Function	Description
1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
2, 4	GND	Connection to ground. For optimum RF performance, use via holes as close to ground leads as possible to reduce lead inductance.
3	RF OUT/ BIAS	RF output and bias pin. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper operation.

Part Number Ordering Information

Part Number	Reel Size	Devices/Reel
SGA-6589	13''	3000
SGA-6589Z	13''	3000