

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LOW NOISE, HIGH GAIN SIGE HBT

Package: SOT-343

Product Description

SiGe HBT

Si CMOS

GaN HEMT

InP HBT

RF MEMS LDMOS

Si BJT

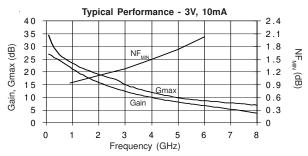
GaAs pHEMT

RFMD's SGA8343Z is a high performance Silicon Germanium Heterostructure Bipolar Transistor (SiGe HBT) designed for operation from DC to 6GHz. The SGA8343Z is optimized for 3V operation but can be biased at 2V for low-voltage battery operated systems. The device provides high gain, low NF, and excellent linearity at a low cost. It can be operated at very low bias currents in applications where high linearity is not required. The matte tin finish on the lead-free package utilizes a post annealing process to mitigate tin whisker formation and is RoHS compliant per EU Direc-

Optimum Technology Matching® Applied

GaAs HBT

GaAs MESFET


InGaP HBT

SiGe BiCMOS

Si BiCMOS

Optimum Technology tive 2002/95. This package is also manufactured with green molding compounds that contain no antimony trioxide nor halogenated fire retardants.

Typical Performance - 3V, 10mA

Features

- DC to 6GHz Operation
- 0.9dB NF_{MIN} at 0.9GHz
- 24dB GMAX at 0.9GHz
- |GOPT|=0.10 at 0.9GHz
- OIP3=+28dBm, P1dB=+9dBm
- Low Cost, High Performance, Versatility

Applications

- Analog and Digital Wireless Systems
- 3G, Cellular, PCS, RFID
- Fixed Wireless, Pager Systems
- Driver Stage for Low Power Applications
- Oscillators

Parameter		Specification	ı	Unit	Condition	
Parameter	Min.	Тур.	Max.			
Maximum Available Gain		23.9		dB	0.9GHz, Z _S =Z _S *, Z _L =Z _L *	
		19.3		dB	1.9GHz	
		17.7		dB	2.4GHz	
Minimum Noise Figure		0.94		dB	0.9GHz, Z _S =Gamma _{OPT} , Z _L =Z _L *	
		1.10		dB	1.9GHz	
		1.18		dB	2.4GHz	
Insertion Gain	21.0	22.0	23.0	dB	$0.9\mathrm{GHz},\mathrm{Z_{S}}=\mathrm{Z_{L}}=50\Omega^{[1]}$	
Noise Figure		1.40	1.75	dB	1.9GHz, LNA Application Circuit Board ^[2]	
Gain	15.5	16.5	17.5	dB	1.9GHz, LNA Application Circuit Board ^[2]	
Output Third Order Intercept Point	25.8	27.8		dBm	1.9GHz, LNA Application Circuit Board ^[2]	
Output 1dB Compression Point	7.5	9.0		dBm	1.9GHz, LNA Application Circuit Board ^[2]	
DC Current Gain	120	180	300			
Breakdown Voltage	5.7	6.0		V	collector - emitter	
Thermal Resistance		200		°C/W	junction - lead	
Operating Voltage			4.0	V	collector - emitter	
Operating Current			50	mA	collector - emitter	

^[1] Performance is based on historical statistical analysis. [2] 100% tested on test fixture optimized for 1.9GHz operation.

SGA8343Z

Absolute Maximum Ratings

Parameter	Rating	Unit
Collector Current (ICE)	72	mA
Base Current (IB)	1	mA
Collector - Emitter Voltage (VCE)	5	V
Collector - Base Voltage (VCB)	12	V
Emitter - Base Voltage (VEB)	4.5	V
RF Input Power (PIN)	5	dBm
Storage Temperature Range (TSTOR)	-40 to +150	°C
Power Dissipation (PDISS)	350	mW
Operating Junction Temperature (TJ)	+150	°C
Operating Temperature Range	-40 to +85	°C

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

Halogen Free (Chlorine, Bromine) Antimony Free TBBP-A (C15H12Br402) Free SVHC Free

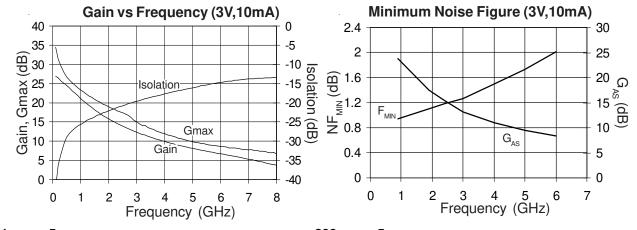
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Typical Performance - Engineering Application Circuits

Freq (GHz)	VS (V)	VCE (V)	ICQ (mA)	NF (dB)	Gain (dB)	P1dB (dBm)	OIP3 ^[1] (dBm)	S11 (dB)	S22 (dB)	Comments
0.90	53.0	3.0	12	1.25	18.2	9	27.3	-16	-18	series feedback
1.575	3.3	2.7	10	1.25	15.7	6.8	26.5	-10	-25	
1.90	5.0	3.0	12	1.4	16.5	9	27.8	-9	-24	
2.40	3.3	2.7	10	1.6	14.4	9	27.5	-13	-24	

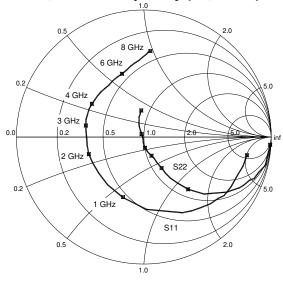
[3] POUT=0dBm per tone, 1MHz tone spacing.
Refer to the application note for additional RF data, PCB layouts, BOMs, biasing instructions, and other key issue to be considered.

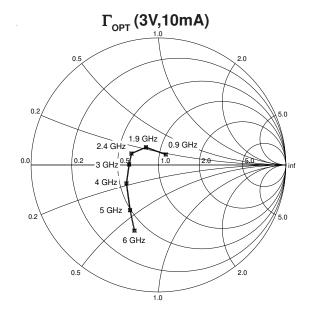
Peak Performance Under Optimum Matching Conditions


Freq	VCE	ICQ	NF	GMAX	P1dB	OIP3
(GHz)	(V)	(mA)	$(dB)^{[2]}$	(dB)	(dBm) ^[4]	(dBm) ^[4]
0.90	2	10	0.90	23.7	10	25
0.90	3	10	0.94	23.9	13	29
1.90	2	10	1.05	19.1	10	25
1.90	3	10	1.10	19.3	13	29
2.40	2	10	1.15	17.4	10	25
2.40	3	10	1.18	17.7	13	29

[2] $Z_S = \Gamma_{OPT}$, $Z_L = Z_L^*$, The input matching circuit loss have been de-embedded.

[3] $Z_S = Z_{SOPT}$, $Z_L = Z_{LOPT}$, where Z_{SOPT} and Z_{LOPT} have been tuned for max P1dB (current allowed to drive-up with constant VCE). [4] $Z_S = Z_{SOPT}$, $Z_L = Z_{LOPT}$, where Z_{SOPT} and Z_{LOPT} have been tuned for max OIP3. Note: Optimum NF, P1dB, and OIP3 performance cannot be achieved simultaneously.


Typical Performance - De-embedded S-Parameters



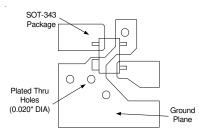
S11 versus Frequency

S22 versus Frequency

Note:

S-parameters are de-embedded to the device leads with ZS=ZL= 50Ω . De-embedded S-parameters can be downloaded from our website (www.rfmd.com)

SGA8343Z

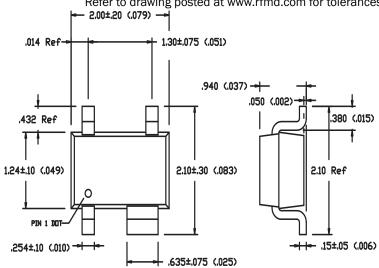

Typical Performance - Noise Parameters - 3V, 10mA

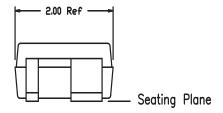
Frequency (GHz)	NFMIN (dB) ^[5]	$\Gamma_{ extsf{OPT}}$ Mag <ang< th=""><th>r_n (Ω)</th><th>GMAX (dB)</th></ang<>	r _n (Ω)	GMAX (dB)
0.9	0.94	0.10<55	0.11	23.88
1.9	1.1	0.71<125	0.10	19.33
2.4	1.18	0.25<157	0.09	17.66
3	1.27	0.23<179	0.09	15.01
4	1.5	0.29<-150	0.12	11.94
5	1.73	0.42<-122	0.18	9.84
6	2.02	0.55<-110	0.24	8.62

^[5] $Z_S = \Gamma_{OPT}$, $Z_L = Z_L^*$, NF_{MIN} is a noise parameter for which the input matching circuit losses have been de-embedded. The noise parameters were measured using a Maury Microwave Automated Tuner System. The device was mounted on a 0.010" PCB with plated-thru holes close to pins 2 and 4.

Pin	Function	Description
1	BASE	RF input/base pin.
2, 4	EMITTER	Connection to ground. Use multiple via holes to reduce emitter inductance.
3	COLLECTOR	RF output/collector bias.

Recommended PCB Layout


Use multiple plated-thru via holes located close to the package pins to ensure a good RF ground connection to a continuous groundplane on the backside of the board.

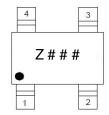


Package Drawing

Dimensions in inches (millimeters)

Refer to drawing posted at www.rfmd.com for tolerances.

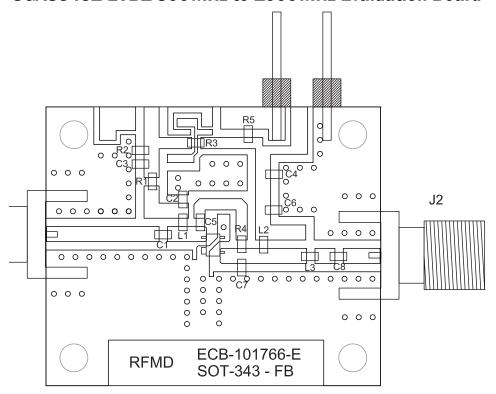
Scale (mm) 1:2


Notes

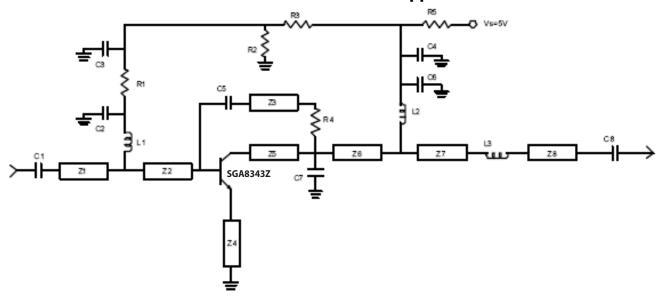
- 1. Lead Base Metal Copper Olin 194
- 2. Lead Finish

Std PN - Sn/Pb Sn => 80%

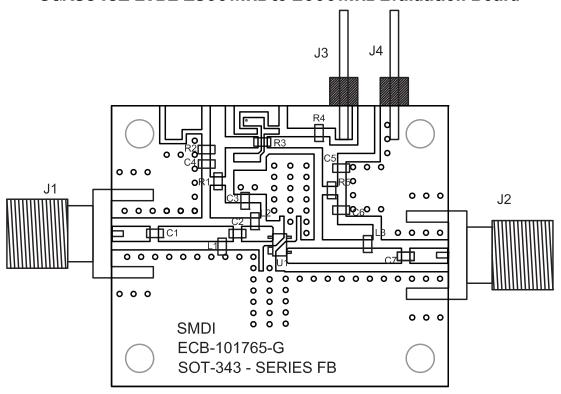
Z Option - 100% Matte Sn - .010 (.0004) min thk


Part Identification

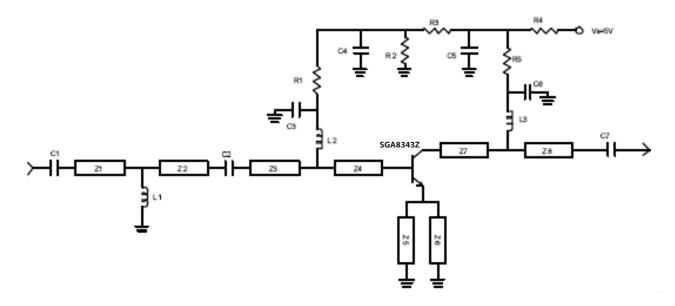
LotXref trace code begins with "Z".


SGA8343Z-EVB1 800 MHz to 1000 MHz Evaluation Board

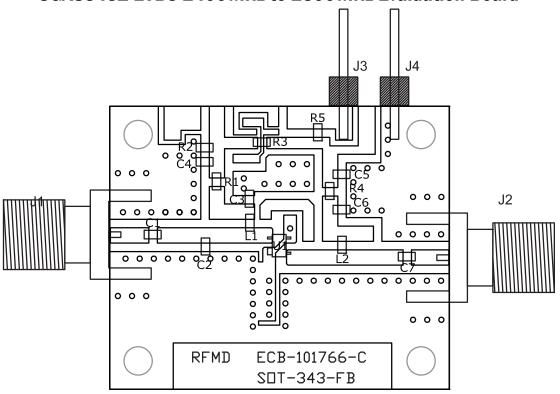
Ref. Des	Part Number	Value
C1, 2, 6, 8	ROHM MCH185A390J	39pF
C7	ROHM MCH185AOR5C	0.5 pF
C3, 4, 5	Samsung CL 10B104KONC	0.1μF
L1	TOKO LL 1608-FS18NJ	18nH
L2	TOKO LL 1608-FSR12J	120nH
L3	TOKO LL 1608-FS6N8J	6.8nH
R1	ROHM MCR03J5R1	5.1Ω
R2	ROHM MCR03J911	910Ω
R3, 4	ROHM MCR03J242	2.4ΚΩ
R5	ROHM MCRO.J161	160Ω
Z1	non-critical	50Ω
Z2	4.0 degrees at 900MHz	50Ω
Z3	11.5 degrees at 900 MHz	63Ω
Z4	5.0 degrees at 900MHz	50Ω
Z5	3.6 degrees at 900MHz	50Ω
Z6	3.7 degrees at 900MHz	50Ω
Z7	7.1 degrees at 900 MHz	50Ω
Z8	non-critical	50Ω



SGA8343Z-EVB1 800 MHz to 1000 MHz Application Schematic


SGA8343Z-EVB2 1800 MHz to 2000 MHz Evaluation Board

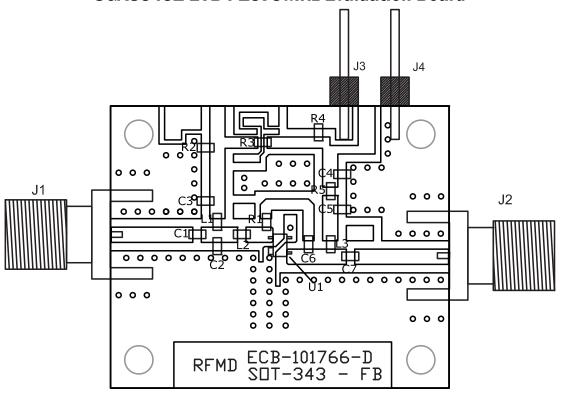
Ref. Des	Part Number	Value
C1, 7	ROHM MCH185A390J	39 pF
C2	ROHM MCH185A2R2C	2.2 pF
C3, 6	ROHM MCH185A100D	10pF
C4, 5	Samsung CL10B104K0NC	0.1μF
L1	TOKO LL 1608-FS3N9S	3.9 nH
L2	TOKO LL 1608-FS18NJ	18nH
L3	TOKO LL 1608-FS3N3S	3.3 nH
R1, 5	ROHM MCR03J5R1	5.1Ω
R2	ROHM MCR03J911	910Ω
R3	ROHM MCR03J242	2.4ΚΩ
R4	ROHM MCRO.J161	160Ω
Z1	non-critical	50Ω
Z2	3.9 degrees at 1900 MHz	50Ω
Z3	4.7 degrees at 1900 MHz	50Ω
Z4	6.4 degrees at 900MHz	50Ω
Z5	9.8 degrees at 1900 MHz	50Ω
Z6	9.8 degrees at 1900 MHz	50Ω
Z7	28.7 degrees at 1900 MHz	50Ω
Z8	non-critical	50Ω



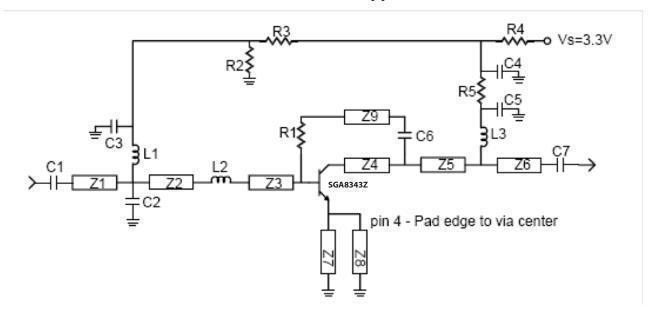
SGA8343Z-EVB2 1800 MHz to 2000 MHz Application Schematic


SGA8343Z-EVB3 2400 MHz to 2500 MHz Evaluation Board

Ref. Des	Part Number	Value
C1, 3, 6, 7	ROHM MCH185A5R6D	5.6pF
C2	ROHM MCH185AO10C	1.0 pF
C4. 5	Samsung CL 10B104KONC	0.1μF
L1	TOKO LL 1608-FS10NJ	10nH
L2	TOKO LL 1608-FS2N7S	2.7 nH
R1, 4	ROHM MCR03J100	10Ω
R2	ROHM MCR03J102	1.1ΚΩ
R3	ROHM MCR03J222	2ΚΩ
R5	ROHM MCR50J620	62Ω
Z1	non-critical	50Ω
Z2	8.2 degrees at 2440 MHz	50Ω
Z3	21.7 degrees at 2440 MHz	50Ω
Z4	6.2 degrees at 2440 MHz	50Ω
Z5	6.2 degrees at 2440 MHz	50Ω
Z6	23.8 degrees at 2440 MHz	50Ω
Z7	non-critical	50Ω



SGA8343Z-EVB3 2400 MHz to 2500 MHz Application Schematic


SGA8343Z-EVB4 1575MHz Evaluation Board

Ref. Des	Part Number	Value
C1, 5, 7	ROHM MCH185A150J	15 pF
C2	ROHM MCH185A1R2C	1.2 pF
C3, 4, 6	Samsung CL 10B104KONC	0.1μF
L1	TOKO LL 1608-FS39NJ	39nH
L2	TOKO LL 1608-FS1N8S	1.8nH
L3	TOKO LL 1608-FS3N9S	3.9 nH
R1, 3	ROHM MCR03J222	2.2ΚΩ
R2	ROHM MCR03J102	1.0ΚΩ
R4	ROHM MCR03J620	62Ω
R5	ROHM MCR03J100	10Ω
Z1	non-critical	50Ω
Z2	6.5 degrees at 1575MHz	50Ω
Z3	7.8 degrees at 1575 MHz	50Ω
Z4	6.4 degrees at 1575MHz	50Ω
Z5	6.4 degrees at 1575MHz	50Ω
Z6	non-critical	50Ω
Z7	11.1 degrees at 1575MHz	50Ω
Z8	6.3 degrees at 1575MHz	50Ω
Z9	26.0 degrees at 1575MHz	60Ω

SGA8343Z-EVB4 1575MHz Application Schematic

Ordering Information

Ordering Code	Description
SGA8343ZSQ	Standard 25 piece bag
SGA8343ZSR	Standard 100 piece reel
SGA8343Z	Standard 3000 piece reel
SGA8343ZPCK1	800 MHz to 1000 MHz PCBA with 5-piece sample bag
SGA8343ZPCK2	1800 MHz to 2000 MHz PCBA with 5-piece sample bag
SGA8343ZPCK3	2400MHz to 2500MHz PCBA with 5-piece sample bag
SGA8343ZPCK4	1575 MHz PCBA with 5-piece sample bag