imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

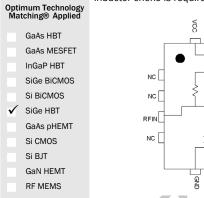
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

rfmd.com

SGB-6533(Z)

DC to 3 GHz ACTIVE BIAS GAIN BLOCK


Current and a second

RFMD Green, RoHS Compliant, Pb-Free (Z Part Number) Package: 3x3 QFN, 16-Pin

Product Description

RFMD's SGB-6533 is a high performance SiGe HBT MMIC amplifier utilizing a Darlington configuration with an active bias network. The active bias network provides stable current over temperature and process Beta variations. Designed to run directly from a 5V supply the SGB-6533 does not require a drop resistor as compared to typical Darlington amplifiers. This robust amplifier features a Class 1C ESD rating, low thermal resistance, and unconditional stability. The SGB-6533 product is designed for high linearity 5V gain block applications that require small size and minimal external components. It is on chip matched to 50Ω and an external bias

inductor choke is required for the application band.

Features

- High Reliability SiGe HBT Technology
- Robust Class 1C ESD
- Simple and Small Size
- P_{1dB}=18.5dBm at 1950MHz
- IP₃=32dBm at 1950MHz
- Low Thermal Resistance=60°C/W

Applications

- 5V Applications
- LO Buffer Amp
- RF Pre-Driver and RF Receive Path

Dowowodow	Specification		11	Oanditian	
Parameter	Min.	Тур.	Max.	Unit	Condition
Small Signal Gain		25.0		dB	850 MHz
	17.0	18.5	20.0	dB	1950MHz
		17.0		dB	2400MHz
Output Power at 1dB Compression		19.0		dBm	850MHz
	17.0	18.5		dBm	1950MHz
		18.0		dBm	2400MHz
Output Third Order Intercept Point		32.0		dB	850MHz
	30.0	32.0		dB	1950MHz
		32.0		dB	2400MHz
Noise Figure		3.7	4.7	dB	1950MHz
Frequency of Operation	DC		3000	MHz	
Current	76.0	88.0	98.0	mA	
Input Return Loss	11.0	15.0		dB	1950MHz
Output Return Loss	10.0	14.0		dB	1950MHz
Thermal Resistance		60		°C/W	junction to backside

Test Conditions: $Z_0 = 50\Omega$, $V_{CC} = 5V$, $I_C = 88$ mA, T = 30 °C

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity^{IM}, PowerStar®, POLARIS^{IM} TOTAL RADIO^{IM} and UltimateBlue^{IM} are trademarks of RFMD, LLC. BLUETOOTH is a trademark wwwed by Bluetooth SIG. Inc. LLS A and licensed for use by RFMD All other trade names, trademarks and registered trademarks are the property of their respective owners. @2006. RF Micro Devices. Inc.

SGB-6533(Z)

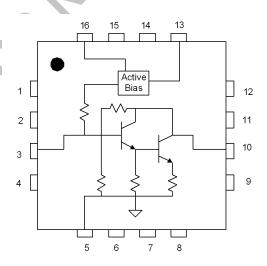
rfmd.com

Absolute Maximum Ratings

0				
Parameter	Rating	Unit		
Current (I _C total)	150	mA		
Max Device Voltage (V _D)	6.5	V		
RF Input Power, Z_{LOAD} =50 Ω	15	dBm		
RF Input Power, Z _{LOAD} >10:1VSWR	7	dBm		
Power Dissipation	0.75	W		
Max Junction Temperature (T _J)	150	°C		
Operating Temperature Range (T_L)	-40 to + 85	°C		
Max Storage Temperature	-40 to +150	°C		

Detailed Performance Table: V_{CC} =5V, I_C =88mA, T=25°C, Z=50 Ω

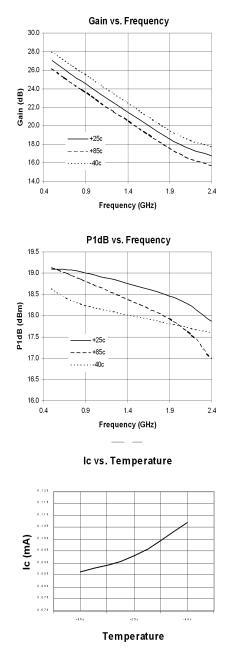
Caution! ESD sensitive device.

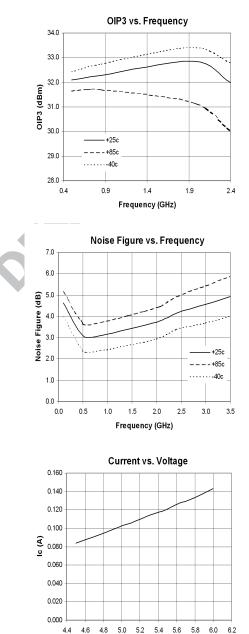

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor-mance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EU Directive 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ('RFMD') for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuity, recommended application circuitry and specifications at any time without prior notice.

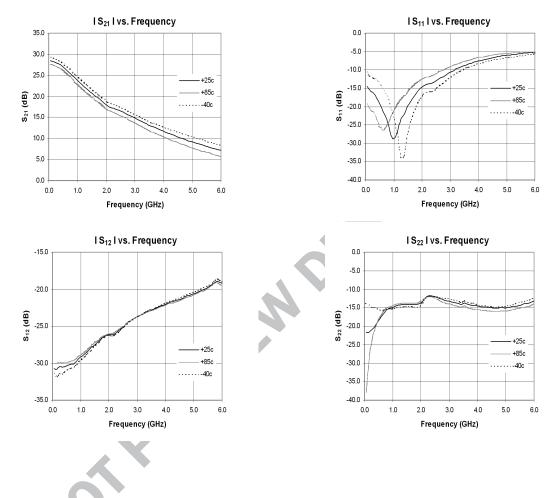
ax Storage Temperature -40 to +150 °C							
eration of this device beyond any one of these age. For reliable continuous operation, the drexced the maximum operating values specias Conditions should also satisfy the following $I_D V_D < (T_J - T_L) / R_{TH}$, j-l	evice voltage and curren fied in the table on page expression:	it must not e one.	C	C			
tailed Performance Table: V_{CC} =5V, I _C	Unit	<u>2=50Ω</u> 100	500	850	1950	2400	3500
Parameter	Unit						
		MHz	MHz	MHz	MHz	MHz	MHz
Small Signal Gain (G)	dB			MHz 25.0		MHz 17.0	
	dB	MHz	MHz	MHz	MHz	MHz	MHz
Small Signal Gain (G)) dBm	MHz	MHz 26.9	MHz 25.0	MHz 18.5	MHz 17.0	MHz
Small Signal Gain (G) Output 3rd Order Intercept Point (OIP ₃) dBm	MHz	MHz 26.9 32.0	MHz 25.0 32.0	MHz 18.5 32.0	MHz 17.0 32.0	MHz
Small Signal Gain (G) Output 3rd Order Intercept Point (OIP ₃ Output Power at 1dB Compression (P _{1d}	dB a) dBm a(B) dBm	MHz 28.4	MHz 26.9 32.0 19.1	MHz 25.0 32.0 19.0	MHz 18.5 32.0 18.5	MHz 17.0 32.0 18.0	MHz 13.1
Small Signal Gain (G) Output 3rd Order Intercept Point (OIP ₃ Output Power at 1dB Compression (P _{1d} Input Return Loss (IRL)	dB a) dBm aB) dBm dB	MHz 28.4 15.1	MHz 26.9 32.0 19.1 19.1	MHz 25.0 32.0 19.0 26.4	MHz 18.5 32.0 18.5 15.0	MHz 17.0 32.0 18.0 13.5	MHz 13.1 8.7


Simplified Device Schematic



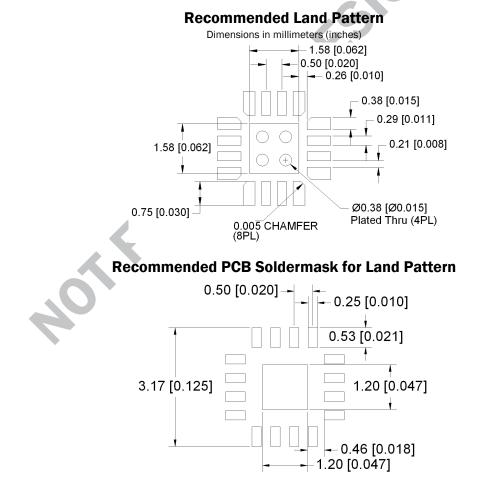
RFMD •)))) rfmd.com

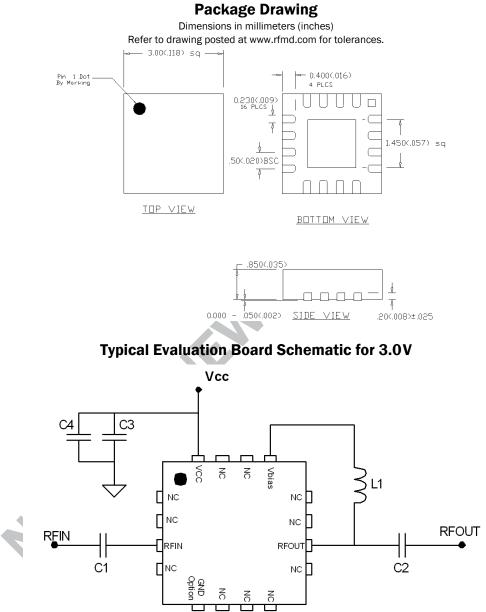
Evaluation Board Data ($V_{CC}=V_{BIAS}=5.0V$, $I_{C}=88$ mA) Bias Tee substituted for DC feed inductor (L1)


6.2

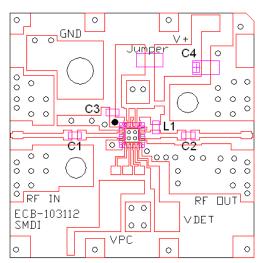
Vc (Volts)

SGB-6533(Z)


Evaluation Board Data ($V_{CC}=V_{BIAS}=5.0V$, $I_{C}=88$ mA) Bias Tee substituted for DC feed inductor (L1) cont


rfmd.com

Pin	Function	Description		
1, 2,	NC	These are no connect pins. Leave them unconnected on the PC board.		
4, 6,				
7, 8,				
11,				
12, 14				
3	RF IN	RF input pin. A DC voltage should not be connected externally to this pin		
5	GND	An extra ground pin that is connected to the backside exposed paddle. Connection is optional.		
10	RF OUT	RF Output pin. Bias is applied to the Darlington stage thru this pin.		
13	VBIAS	This pin sources the current from the active bias circuit. Connect to pin 10 thru an inductor choke.		
16	VCC	This is Vcc for the active bias circuit.		
Back-	GND	The backside exposed paddle is the main electrical GND and requires multiple vias in the PC board to GND. It is also the main thermal path.		
side				



Evaluation Board Layout and Bill of Materials

Board material GETEK, 31mil thick, Dk=4.2, 1oz copper

Component Values By Band

Designator	500MHz	850 MHz	1950MHz	2400 MHz
C3	1000pF	1000pF	1000pF	1000pF
C4*	1uF	1uF	1uF	1uF
C1, C2	220 pF	68pF	43 pF	22 pF
L1	68nH	33nH	22nH	18nH

*C4 is optional depending on application and filtering. Not required for SGB device operation.

Note: The amplifier can be run from a 8V supply by simply inserting a 33Ω resistor in series with V_{CC}.

Part Identification

The part will be symbolized with an "SGB6533" for Sn/Pb plating or "SGB65Z" for RoHS green compliant product. Marking designator will be on the top surface of the package.

Ordering Information

Part Number	Reel Size	Devices/Reel
SGB-6533	13"	3000
SGB-6533Z	13"	3000

othornul