imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

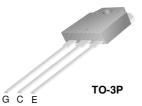
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

SGH23N60UFD

Ultra-Fast IGBT

General Description


Fairchild's Insulated Gate Bipolar Transistor(IGBT) UFD series provides low conduction and switching losses. UFD series is designed for the applications such as motor control and general inverters where High Speed Switching is required.

Features

- High Speed Switching
- + Low Saturation Voltage : $V_{CE(sat)}$ = 2.1 V @ I_C = 12A
- High Input Impedance
- CO-PAK, IGBT with FRD : t_{rr} = 42ns (typ.)

Application

AC & DC Motor controls, General Purpose Inverters, Robotics, Servo Controls

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		SGH23N60UFD	Units	
V _{CES}	Collector-Emitter Voltage		600	V	
V _{GES}	Gate-Emitter Voltage		± 20	V	
	Collector Current	@ T _C = 25°C	23	A	
I _C	Collector Current	@ T _C = 100°C	12	A	
I _{CM (1)}	Pulsed Collector Current		92	Α	
IF	Diode Continuous Forward Current	@ T _C = 100°C	12	A	
I _{FM}	Diode Maximum Forward Current		92	A	
P _D	Maximum Power Dissipation	@ T _C = 25°C	100	W	
	Maximum Power Dissipation	@ T _C = 100°C	40	W	
TJ	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
TL	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Secon	ds	300	°C	

Notes :

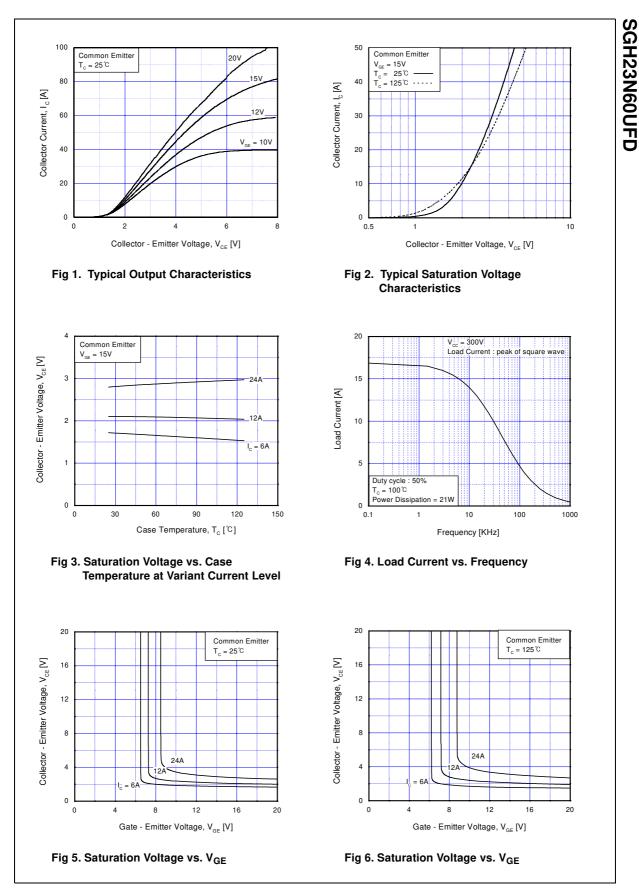
(1) Repetitive rating : Pulse width limited by max. junction temperature

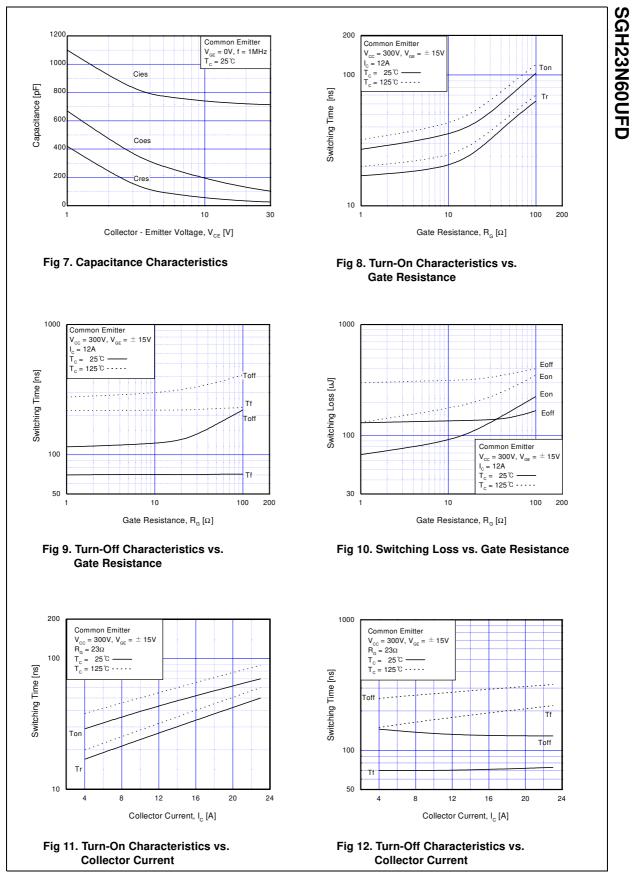
Thermal Characteristics

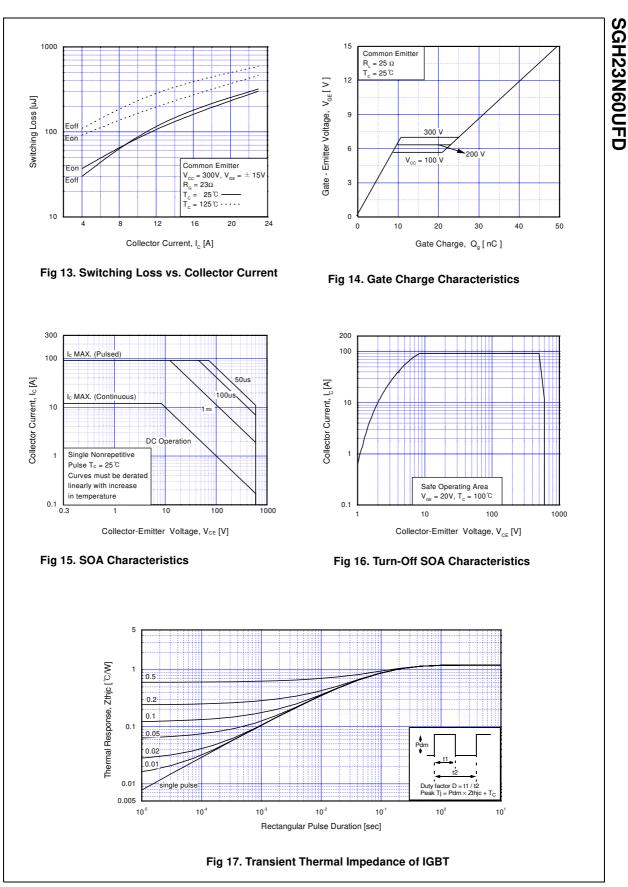
Symbol	Parameter	Тур.	Max.	Units
R _{θJC} (IGBT)	Thermal Resistance, Junction-to-Case		1.2	°C/W
$R_{\theta JC}(DIODE)$	Thermal Resistance, Junction-to-Case		2.5	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W

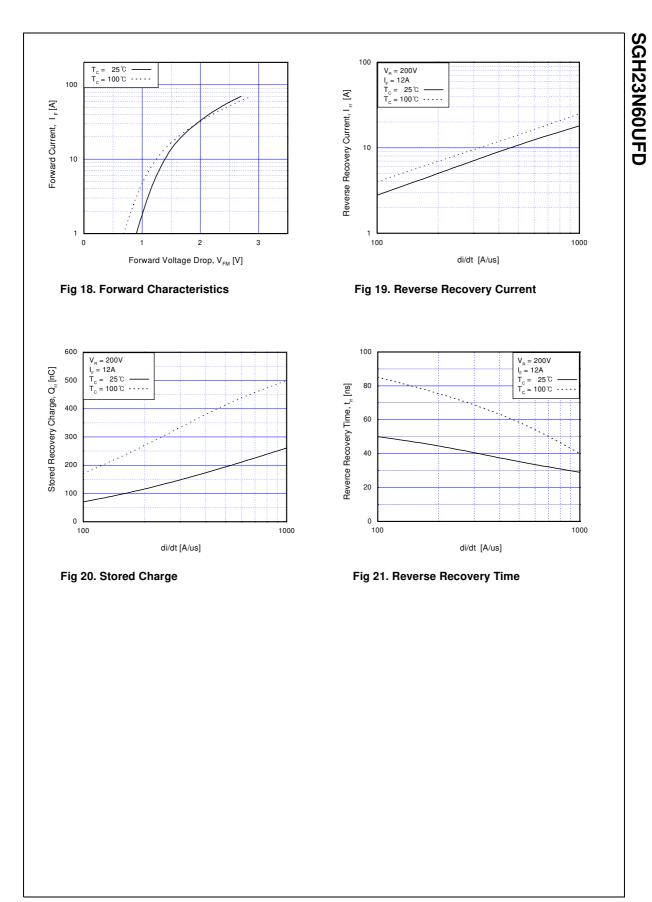
©2000 Fairchild Semiconductor International

September 2000


IGBT


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
oymbol	i urumeter			iyp.	mux.	01113
Off Cha	racteristics					
3V _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 250uA$	600			V
ΔB _{VCES} / ΔT _J	Temperature Coeff. of Breakdown Voltage	$V_{GE} = 0V, I_C = 1mA$		0.6		V/°C
CES	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			250	uA
GES	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nA
			1			
	racteristics					
V _{GE(th)}	G-E Threshold Voltage	$I_{C} = 12mA, V_{CE} = V_{GE}$	3.5	4.5	6.5	V
	Collector to Emitter	$I_{C} = 12A, V_{GE} = 15V$		2.1	2.6	V
V _{CE(sat)}	Saturation Voltage	I _C = 23A, V _{GE} = 15V		2.6		V
.	- Okennesterieties					
	c Characteristics			700		
C _{ies}	Input Capacitance	$V_{CE} = 30V, V_{GE} = 0V,$		720		pF
				100		pF
res	Output Capacitance Reverse Transfer Capacitance	f = 1MHz		25		pF
C _{oes} C _{res} Switchi	Reverse Transfer Capacitance	f = 1MHz		25		
C _{res} Switchin d(on)	Reverse Transfer Capacitance Tg Characteristics Turn-On Delay Time	f = 1MHz		25 17		pF ns
C _{res} Switchii d(on) r	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Rise Time			25 17 27		pF ns ns
C _{res} Switchin d(on) r d(off)	Reverse Transfer Capacitance 19 Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time	V _{CC} = 300 V, I _C = 12A,		25 17 27 60	 130	ns ns ns
C _{res} Switchin d(on) r d(off) f	Reverse Transfer Capacitance 19 Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{A},$ $R_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V},$	 	25 17 27 60 70	 130 150	pF ns ns ns ns
Cres Switchin d(on) r d(off) f Eon	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss	V _{CC} = 300 V, I _C = 12A,	 	25 17 27 60 70 115	 130 150 	ns ns ns ns uJ
Switchin d(on) r d(off) f = on = off	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{A},$ $R_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V},$	 	25 17 27 60 70 115 135	 130 150 	pF ns ns ns uJ uJ
Cres Switchin d(on) r d(off) f con con coff ts	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{A},$ $R_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V},$	 	25 17 27 60 70 115 135 250	 130 150 400	pF ns ns ns uJ uJ uJ
Cres Switchin d(on) r d(off) f on con coff ts d(on)	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{A},$ $R_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V},$	 	25 17 27 60 70 115 135 250 23	 130 150 400 	ns ns ns uJ uJ uJ ns
Sres Switchin d(on) r d(off) f on con ts d(on) r	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A},$ $R_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V},$ Inductive Load, $T_{C} = 25^{\circ}\text{C}$	 	25 17 27 60 70 115 135 250 23 32	 130 150 400 	ns ns ns uJ uJ uJ ns ns
Switchin d(on) r d(off) f on off edf edf off ets d(on) r d(off)	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-On Delay Time Rise Time Turn-On Delay Time Rise Time Turn-Off Delay Time	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A},$ $R_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V},$ Inductive Load, $T_{C} = 25^{\circ}\text{C}$ $V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A},$	 	25 17 27 60 70 115 135 250 23 32 100	 130 150 400 200	ns ns ns uJ uJ uJ ns ns ns ns
Cres Switchin d(on) r d(off) f con con con ts d(on) r d(off) f	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-On Delay Time Rise Time Turn-Off Delay Time Rise Time Turn-Off Delay Time Fall Time	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A},$ $R_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V},$ Inductive Load, $T_{C} = 25^{\circ}\text{C}$ $V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A},$ $R_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V},$	 	25 17 27 60 70 115 135 250 23 32 100 220	 130 150 400 200 250	ns ns ns uJ uJ uJ uJ ns ns ns ns ns
Switchin d(on) r d(off) f on e off e d(on) r d(on) r d(on) r d(off) f on	Reverse Transfer Capacitance D Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Delay Time Fall Time Turn-Off Delay Time Fall Time Turn- On Switching Loss	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A},$ $R_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V},$ Inductive Load, $T_{C} = 25^{\circ}\text{C}$ $V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A},$	 	25 17 27 60 70 115 135 250 23 32 100 220 205	 130 150 400 200 250 	ns ns ns uJ uJ uJ uJ ns ns ns ns uJ
Switchin d(on) r d(off) f on off ts d(off) r d(on) r d(off) f on for for on f on off	Reverse Transfer Capacitance International State State Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Onf Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Delay Time Fall Time Turn-Off Delay Time Fall Time Turn-Off Switching Loss Turn-Off Switching Loss Turn- On Switching Loss Turn- Off Switching Loss	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A},$ $R_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V},$ Inductive Load, $T_{C} = 25^{\circ}\text{C}$ $V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A},$ $R_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V},$	 	25 17 27 60 70 115 135 250 23 32 100 220 205 320	 130 150 400 200 250 	pF ns ns ns uJ uJ uJ uJ ns ns ns ns uJ uJ uJ uJ
Switchin d(on) r d(off) f on ent ent d(off) ts d(off) f on ent ent d(off) f on ent f ent ent ent	Reverse Transfer Capacitance bg Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Delay Time Fall Time Turn- Off Switching Loss Turn- Off Switching Loss Turn- Off Switching Loss Total Switching Loss Total Switching Loss	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A}, \\ \text{R}_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V}, \\ \text{Inductive Load}, \text{ T}_{C} = 25^{\circ}\text{C} \\ \\ \text{V}_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A}, \\ \text{R}_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V}, \\ \text{Inductive Load}, \text{ T}_{C} = 125^{\circ}\text{C} \\ \end{array}$	 	25 17 27 60 70 115 135 250 23 32 100 220 205 320 525	 130 150 400 200 250 800	pF ns ns ns uJ uJ uJ uJ ns ns ns ns uJ uJ uJ uJ uJ
Switchin d(on) r dd(off) f on off ts d(off) f off ts d(off) f on conff ts d(off) f con con <td>Reverse Transfer Capacitance D Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Delay Time Fall Time Turn-Off Switching Loss Turn- Off Switching Loss Turn- Off Switching Loss Total Gate Charge</td> <td>$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A},$ $R_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V},$ Inductive Load, $T_{C} = 25^{\circ}\text{C}$ $V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A},$ $R_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V},$ Inductive Load, $T_{C} = 125^{\circ}\text{C}$ $V_{CE} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A},$</td> <td></td> <td>25 17 27 60 70 115 135 250 23 32 100 220 205 320 525 49</td> <td> 130 150 400 200 250 250 800 80</td> <td>pF ns ns ns uJ uJ uJ ns ns ns ns uJ uJ uJ uJ uJ nC</td>	Reverse Transfer Capacitance D Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Delay Time Fall Time Turn-Off Switching Loss Turn- Off Switching Loss Turn- Off Switching Loss Total Gate Charge	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A},$ $R_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V},$ Inductive Load, $T_{C} = 25^{\circ}\text{C}$ $V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A},$ $R_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V},$ Inductive Load, $T_{C} = 125^{\circ}\text{C}$ $V_{CE} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A},$		25 17 27 60 70 115 135 250 23 32 100 220 205 320 525 49	 130 150 400 200 250 250 800 80	pF ns ns ns uJ uJ uJ ns ns ns ns uJ uJ uJ uJ uJ nC
Switchin d(on) r d(off) f on ent ent d(off) ts d(off) f on ent ent d(off) f on ent f ent ent ent	Reverse Transfer Capacitance bg Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Delay Time Fall Time Turn- Off Switching Loss Turn- Off Switching Loss Turn- Off Switching Loss Total Switching Loss Total Switching Loss	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A}, \\ \text{R}_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V}, \\ \text{Inductive Load}, \text{ T}_{C} = 25^{\circ}\text{C} \\ \\ \text{V}_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A}, \\ \text{R}_{G} = 23\Omega, \text{ V}_{GE} = 15\text{ V}, \\ \text{Inductive Load}, \text{ T}_{C} = 125^{\circ}\text{C} \\ \end{array}$	 	25 17 27 60 70 115 135 250 23 32 100 220 205 320 525	 130 150 400 200 250 800	pF ns ns ns uJ uJ uJ uJ ns ns ns ns uJ uJ uJ uJ uJ


Electrical Characteristics of DIODE $T_{C} = 25^{\circ}C$ unless otherwise noted


Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Units
V	Diode Forward Voltage	I 12A	$T_{C} = 25^{\circ}C$		1.4	1.7	v
V _{FM}	VFM Diode Forward Voltage	I _F = 12A	$T_{C} = 100^{\circ}C$		1.3		v
+	Diode Reverse Recovery Time		$T_{C} = 25^{\circ}C$		42	60	ne
t _{rr}	Didde neverse necovery fille		$T_{\rm C} = 100^{\circ}{\rm C}$		80		ns
1	Diode Peak Reverse Recovery	I _F = 12A,	$T_{C} = 25^{\circ}C$		3.5	6.0	Α
Irr	Current	di/dt = 200A/us	$T_{C} = 100^{\circ}C$		5.6		A
0	r Diode Reverse Recovery Charge		$T_{C} = 25^{\circ}C$		80	180	nC
Q _{rr}	Didde neverse necovery Charge		T _C = 100°C		220		

©2000 Fairchild Semiconductor International

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [™]	FASTr [™]	QFET [™]	VCX™
Bottomless [™]	GlobalOptoisolator [™]	QS [™]	
CoolFET [™]	GTO [™]	QT Optoelectronics [™]	
CROSSVOLT [™]	HiSeC [™]	Quiet Series [™]	
DOME [™]	ISOPLANAR [™]	SuperSOT [™] -3	
E ² CMOS [™]	MICROWIRE [™]	SuperSOT [™] -6	
EnSigna [™]	OPTOLOGIC [™]	SuperSOT [™] -8	
FACT [™]	OPTOPLANAR [™]	SyncFET [™]	
EACT Quiet Series [™]	POP™	Tinul ogio [™]	
FACT™	OPTOPLANAR™	SyncFET™	
FACT Quiet Series™	POP™	TinyLogic™	
FAST [®]	PowerTrench [®]	UHC™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC