imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

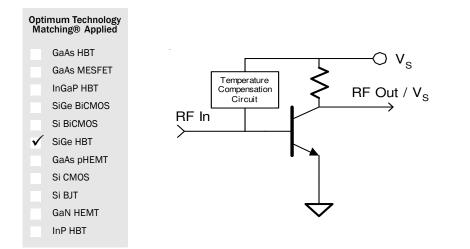
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

rfmd.com

SGL-0163(Z)


100 MHz to 1300 MHz SILICON GERMANIUM CASCADABLE LOW NOISE AMPLIFIER

RFMD Green, RoHS Compliant, Pb-Free (Z Part Number) Package: SOT-363

Product Description

The SGL-0163 is a high performance SiGe HBT MMIC low noise amplifier featuring one-micron emitters with FT up to 50GHz. This device has an internal temperature compensation circuit permitting operation directly from supply voltages as low as 2.5V. The SGL-0163 has been characterized at V_D =3V for low power and 4V for medium power applications. Only two DC-blocking capacitors, a bias resistor, and an optional RF choke are required for operation from 800MHz to 1300MHz.

Features

- Internally Matched to 50Ω 800 MHz to 1300 MHz
- High Input/Output Intercept
- Low Noise Figure: 1.2dB Typ. at 900MHz
- Low Power Consumption
- Single Voltage Supply Operation
- Internal Temperature Compensation

Applications

- Receivers, GPS, RFID
- Cellular, Fixed Wiresless, Land Mobile

Parameter	Specification (V _S =3V)		Specification (V _S =4V)		Unit	Condition			
Farameter	Min.	Typ. Max.		Min. Typ.		Max.	Unit	Condition	
Small Signal Gain		15.7			16.6		dB	800MHz	
	14.0	15.5	17.0		15.8		dB	900MHz	
		14.1			15.0		dB	1000MHz	
Output Power at 1dB Compres- sion		4.4			9.9		dBm	800MHz	
	3.2	5.2			10.1		dBm	900MHz	
		5.6			10.5		dBm	1000MHz	
Input Third Order Intercept Point								Tone Spacing=1MHz P _{OUT} per tone=-13dBm	
		5.3			12.1		dbm	800MHz	
	5.0	7.0			13.4		dBm	900MHz	
		9.0			14.8		dBm	1000MHz	
Noise Figure		1.1			1.6		dB	800MHz, Z _S =50Ω	
		1.2	1.7		1.7		dB	900MHz, Z _S =50Ω	
		1.2			1.7		dB	1000 MHz, Z _S =50Ω	
Input Return Loss	10.0	12.5			15.7		dB	900MHz	
Output Return Loss	11.5	15.6			17.6		dB	900MHz	
Reverse Isolation		20.9			20.9		dB	900MHz	
Device Current	9.5	12.0	14.0		23		mA		
Thermal Resistance		255					°C/W		

Test Conditions: 800 MHz to 1300 Application Circuit, T_{LEAD} = 25 °C, Z_0 = Z_L = 50 Ω

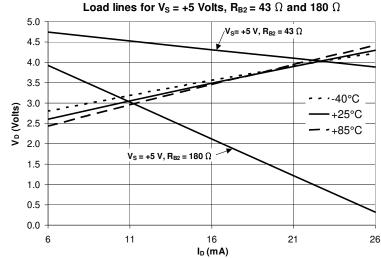
RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity^M, PowerStar®, POLARIS^M TOTAL RADIO^M and UltimateBlue^M are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A, and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the non-nerty of their respective owners. @2006 RF Mirro Devices Inc.

Absolute Maximum Ratings

Parameter	Rating	Unit
Max Device Current (I _D)	45	mA
Max Device Voltage (V _S)	5	V
Max RF Input Power	+10	dBm
Max Junction Temp (T _J)	+150	°C
Operating Temp Range (T _{LEAD})	-40 to +85	°C
Max Storage Temp	+150	°C
ESD Rating - Human Body Model (HBM)	1A	Class
Moisture Sensitivity Level	1	MSL

Operation of this device beyond any one of these limits may cause permanent dam-age. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

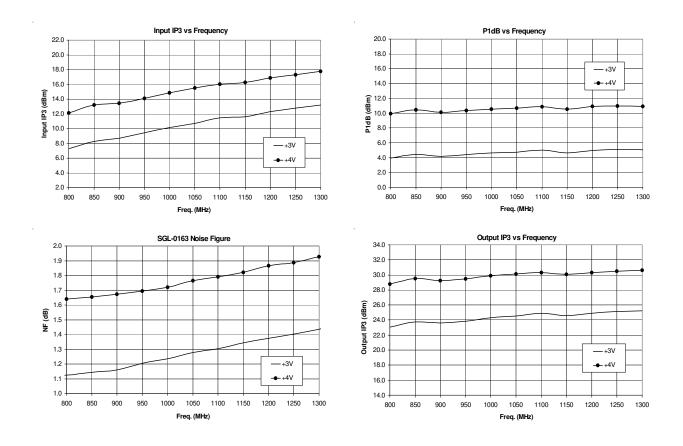
Bias Conditions should also satisfy the following expression: $I_D V_D < (T_J - T_L) / R_{TH}, j \text{-}I$

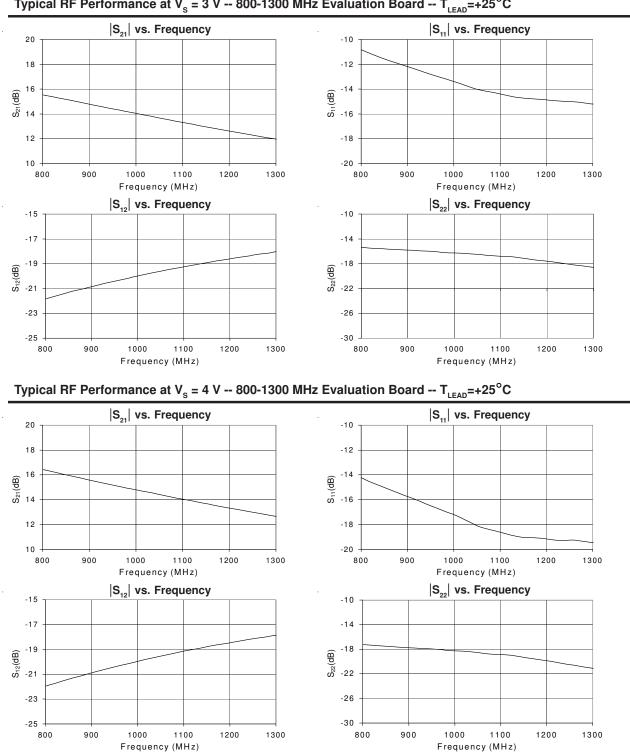


Caution! ESD sensitive device.

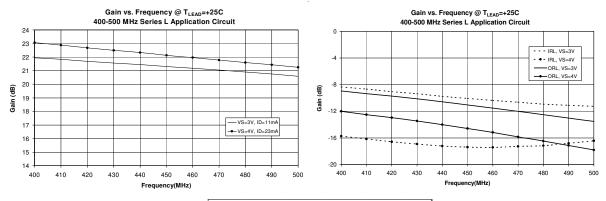
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor-mance or functional operation of the device under Absolute Maximum Rating condi-tions is not implied.

RoHS status based on EUDirective2002/95/EC (at time of this document revision).


The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

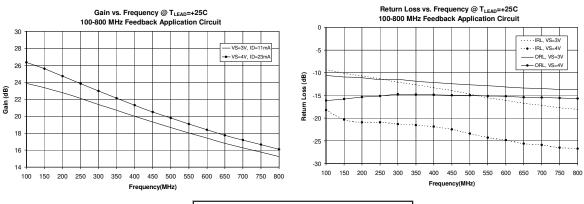

Device Voltage (V_D) vs. Device Current (I_D) Over Temperature

Typical RF Performance at V $_{\rm s}$ = 3 V and 4 V -- 800-1300 MHz Evaluation Board -- $\rm T_{_{LEAD}}$ =+25 $^{\rm o}\rm C$



·IRL, VS=3V

ORL, VS=3V


· · • · · IRL. VS=4V

RF Performance - 400-500MHz Series L Application Circuit

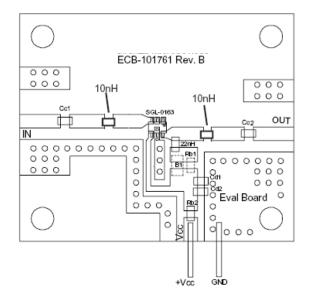
$V_S=3V$, $I_D=11mA$ (Typ.)						
Frog	Gain	P1dB	IIP3	OIP3	NF	
Freq	(dB)	(dBm)	(dBm)	(dBm)	(dB)	
400 MHz	22.0	4.4	1.3	23.1	1.1	
450 MHz	21.3	5.0	3.2	24.7	1.3	
500 MHz	20.6	5.7	4.1	24.7	1.3	
$V_S=4V$, $I_D=24mA$ (Typ.)						
Eree	Gain	P1dB	IIP3	OIP3	NF	
Freq	(dB)	(dBm)	(dBm)	(dBm)	(dB)	
400 MHz	23.1	10.9	6.5	29.6	2.0	
450 MHz	22.2	11.4	8.1	30.3	2.1	
500 MHz	21.2	12.0	7.8	28.9	2.1	

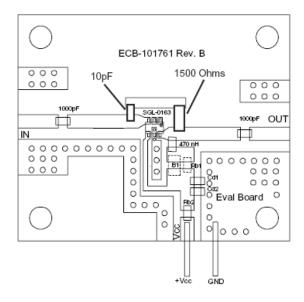
RF Performance - 100-800 MHz RC Feedback Application Circuit

V _S =3V, I _D =11mA (Typ.)							
Free	Gain	P1dB	IIP3	OIP3	NF		
Freq	(dB)	(dBm)	(dBm)	(dBm)	(dB)		
100 MHz	23.9	3.5	-6.8	17.1	1.4		
300 MHz	21.4	3.4	-2.5	18.9	1.2		
500 MHz	18.7	3.5	0.1	18.8	1.2		
800 MHz	15.2	3.7	4.3	19.5	1.2		
V _S =4V, I _D =23mA (Typ.)							
Free	Gain	P1dB	IIP3	OIP3	NF		
Freq	(dB)	(dBm)	(dBm)	(dBm)	(dB)		
100 MHz	26.3	9.2	-4.1	22.2	2.2		
300 MHz	23.0	9.8	2.2	25.1	1.9		
500 MHz	19.8	9.9	5.2	25.0	1.7		
800 MHz	16.1	10.0	9.7	25.8	1.7		

DS091103

100 MHz to 800 MHz Operation


The useful range of the SGL-0163(Z) may be extended down to 100MHz using simple lumped element tuning. Following are two examples:


Option 1: A series inductor introduced at the input and output optimizes RF performance over 100 MHz wide bands. Band center is selected by adjustment of the inductor calues. the example is optimized for the 400 MHz to 500 MHz band.

Option 2: An RC feedback network provides broadband RF performance from 100 MHz to 800 MHz. The resistor value may be adjusted to select a combination of gain/NF/return loss best suited to the particular application.

Data and schematics for these two options are presented below.

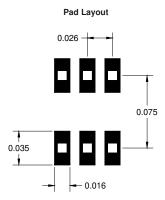
Contact RFMD technical support for further guidance.

Typical Performance with 2.45 GHz Application Circuit

Ref. Designator	Description	Value	Manufact Part Number
B1 ²	Ferrite Bead	1500Ω at 100MHz	11.0
Cc1, Cc2, Cd1	Capacitor, SM, 0603	0.1uF	SAMSUNG CL10B103KBNC T/R
Cd2	Capacitor, SM, 0603	22pF	ROHM MCH185AA220DJK
Rb1 ²	Resistor, SM, 0603	47Ω	PHILLIPS 9C06031A47R0 JL HFT
Rb2	Resistor, SM, 0603	0Ω	PHILLIPS 9C06031A0R00 JL HFT
N/A ¹	Circuit Board	N/A	ECB101761 Rev B

Notes:

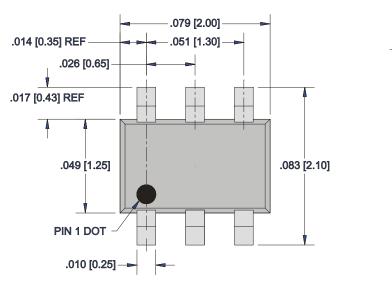
1. Circuit board dielectric material is GETEK, ML200C.

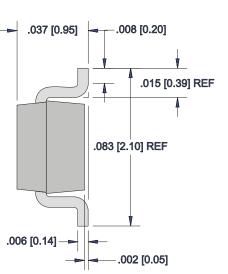

2. B1 and Rb1 recommended for improved K-factor but are optional. Replace with 0Ω resistor if not used.

rfmd.com

Pin	Function	Description
1	NC	No electrical connection. Provide an isolated (ungrounded) solder pad for mounting integrity.
3	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
4	DC BIAS	Voltage supply connection. Bypass with suitable capacitors.
2, 5	GND	Connection to ground. Provide via holes as close to the device ground leads as possible to reduce ground inductance and achieve optimum RF performance.
6	RF OUT/ BIAS	RF output and voltage supply. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper operation.

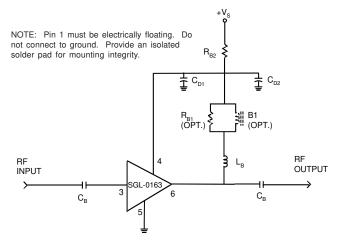
SOT-363 PCB Pad Layout

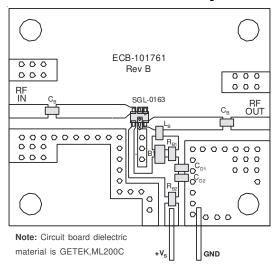



Notes:

- 1. Provide a ground pad area under device pins 2 & 5 with plated via holes to the PCB ground plane.
- 2. We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31 mil thick Getek with 1 ounce copper on both sides.

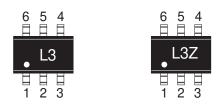
SOT-363 Nominal Package Dimensions

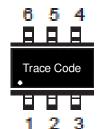

Dimensions in inches (millimeters) Refer to drawing posted at www.rfmd.com for tolerances.


800 MHz to 1300 MHz Application Circuit

Application Circuit Element Values					
Reference Designator	Value Manufacturer & Part No.				
L _B	33 nH	TOKO LL1608-FS27NJ			
B1 1	1500 Ohms @100 MHz	FAIR-RITE 2508051527y0 Ferrite Bead			
C _B , C _{D1}	0.1 uF SAMSUNG CL10B103KBNC				
C _{D2}	22 pF	ROHM MCH185AA220DJK			
R _{B1} ¹	47 Ohms	PHILLIPS 9C06031A47R0 JL HFT			
R _{B2} ²	0 Ohms PHILLIPS 9C06031A0R00 JL HFT				
Notes: 1. B1 and R_, provide improved K-factor but are optional.					

B1 and R_{B1} provide improved K-factor but are optional.
R_{B2} may be introduced as a voltage dropping resistor for use with supply voltages greater than the desired device bias voltage.


Evaluation Board Layout



Part Identification Marking

Alternate Marking with Trace Code Only

Ordering Information

Part Number	nber Description Reel Size		Devices/Reel	
SGL-0163	Tin-Lead	7"	3000	
SGL-0163Z	Lead Free, RoHS Compliant	7"	3000	
SGL-0163Z-EVB1	800-1300 MHz Application Circuit	N/A	N/A	

