

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

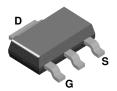
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IGBT

SGM2N60UF

Ultrafast IGBT

General Description


Fairchild's UF series of Insulated Gate Bipolar Transistors (IGBTs) provides low conduction and switching losses. The UF series is designed for applications such as motor control and general inverters where high speed switching is a required feature.

Features

- · High speed switching
- Low saturation voltage : $V_{CE(sat)} = 2.1 \text{ V } @ I_C = 1.2 \text{A}$
- · High input impedance

Applications

AC & DC motor controls, general purpose inverters, robotics, and servo controls.

SOT-223

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		SGM2N60UF	Units
V _{CES}	Collector-Emitter Voltage		600	V
V _{GES}	Gate-Emitter Voltage		± 20	V
	Collector Current	@ T _C = 25°C	2.4	Α
I _C	Collector Current	@ T _C = 100°C	1.2	Α
I _{CM (1)}	Pulsed Collector Current		10	Α
P _D	Maximum Power Dissipation	@ $T_a = 25^{\circ}C$	2.1	W
	- Derate above 25°	C	0.017	W/°C
T _J	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Seco		300	°C

Notes :

(1) Repetitive rating : Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (PCB Mount) (2)		60	°C/W

Notes

(2) Mounted on 1" squre PCB (FR4 or G-10 Material)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 250uA$	600			٧
ΔB _{VCES} / ΔΤ _J	Temperature Coefficient of Breakdown Voltage	$V_{GE} = 0V$, $I_C = 1mA$		0.6		V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			250	uA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nA
On Cha	racteristics					
V _{GE(th)}	G-E Threshold Voltage	$I_C = 1.2 \text{mA}, V_{CE} = V_{GE}$	3.5	4.5	6.5	V
	Collector to Emitter	$I_C = 1.2A$, $V_{GE} = 15V$		2.1	2.6	V
V _{CE(sat)}	Saturation Voltage	I _C = 2.4A, V _{GE} = 15V		2.6		V
Dynami	c Characteristics					
C _{ies}	Input Capacitance	V 20V/V 0V		98		pF
C _{oes}	Output Capacitance	$V_{CE} = 30V_{,} V_{GE} = 0V_{,}$ f = 1MHz		18		pF
C _{res}	Reverse Transfer Capacitance	I = IIVIMZ		4		pF
	ng Characteristics Turn-On Delay Time					
$t_{d(on)}$				4-		
	,	<u> </u> -		15		ns
t _r	Rise Time			20		ns
t _r	Rise Time Turn-Off Delay Time	V _{CC} = 300 V, I _C = 1.2A,		20	130	ns ns
t _r t _{d(off)} t _f	Rise Time Turn-Off Delay Time Fall Time	$R_G = 200\Omega, V_{GE} = 15V,$		20 80 95	130 160	ns ns ns
t_r $t_{d(off)}$ t_f E_{on}	Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss		 	20 80 95 30	130 160	ns ns ns uJ
t_r $t_{d(off)}$ t_f E_{on}	Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss	$R_G = 200\Omega, V_{GE} = 15V,$	 	20 80 95 30 13	130 160 	ns ns ns uJ uJ
t _r t _{d(off)} t _f E _{on} E _{off} E _{ts}	Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss	$R_G = 200\Omega, V_{GE} = 15V,$	 	20 80 95 30 13 43	130 160 70	ns ns ns uJ uJ
t_r $t_{d(off)}$ t_f E_{on} E_{ts} $t_{d(on)}$	Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time	$R_G = 200\Omega, V_{GE} = 15V,$		20 80 95 30 13 43	130 160 70	ns ns ns uJ uJ uJ
t_r $t_{d(off)}$ t_t E_{on} E_{ts} $t_{d(on)}$	Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time	$R_G = 200\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25$ °C	 	20 80 95 30 13 43 19 24	 130 160 70 	ns ns ns uJ uJ uJ ns
t _r td(off) tf Eon Eoff tts td(on) tr td(on) tr td(off)	Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time	$R_G = 200\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$		20 80 95 30 13 43 19 24 115	 130 160 70 200	ns ns ns uJ uJ uJ ns ns
t _r t _{d(off)} t _f E _{on} E _{off} Ets t _{d(on)} t _r t _{d(off)}	Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$R_G = 200\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}$, $I_C = 1.2A$,		20 80 95 30 13 43 19 24 115	 130 160 70 	ns ns ns uJ uJ uJ ns ns ns
t _r t _{d(off)} t _f E _{on} E _{off} Et _{ts} t _{d(on)} t _r t _{d(off)}	Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss	$R_G = 200\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$	 	20 80 95 30 13 43 19 24 115 176 36	 130 160 70 200 250	ns ns uJ uJ ns ns ns
t _r td(off) tf Eon Eoff tts td(on) tr td(on) tr td(off) tr td(off) tf Eon Eoff	Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-On Switching Loss Turn-Off Switching Loss	$R_G = 200\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}$, $I_C = 1.2A$,		20 80 95 30 13 43 19 24 115	 130 160 70 200 250	ns ns ns uJ uJ uJ ns ns ns
tr td(off) tf Eon Eoff tts td(on) tr tr td(on) tr td(off) tf Eon Eoff Eon Eoff	Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss	$\begin{aligned} R_G &= 200\Omega, \ V_{GE} = 15\text{V}, \\ &\text{Inductive Load, } T_C = 25^{\circ}\text{C} \end{aligned}$ $\begin{aligned} V_{CC} &= 300 \ \text{V}, \ I_C = 1.2\text{A}, \\ R_G &= 200\Omega, \ V_{GE} = 15\text{V}, \\ &\text{Inductive Load, } T_C = 125^{\circ}\text{C} \end{aligned}$		20 80 95 30 13 43 19 24 115 176 36 27	 130 160 70 200 250 	ns ns uJ uJ ns ns ns us
$\begin{array}{l} t_r \\ t_{d(off)} \\ t_f \\ E_{on} \\ E_{off} \\ E_{ts} \\ t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ E_{on} \\ E_{off} \\ E_{off} \\ E_{g} \\ Q_g \end{array}$	Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Turn-Off Switching Loss Total Switching Loss Total Gate Charge	$\begin{aligned} R_G &= 200\Omega, \ V_{GE} = 15\text{V}, \\ &\text{Inductive Load, } T_C = 25^{\circ}\text{C} \end{aligned}$ $\begin{aligned} V_{CC} &= 300 \ \text{V}, \ I_C = 1.2\text{A}, \\ R_G &= 200\Omega, \ V_{GE} = 15\text{V}, \\ &\text{Inductive Load, } T_C = 125^{\circ}\text{C} \end{aligned}$ $\begin{aligned} V_{CE} &= 300 \ \text{V}, \ I_C = 1.2\text{A}, \end{aligned}$		20 80 95 30 13 43 19 24 115 176 36 27 63	 130 160 70 200 250 100	ns ns uJ uJ ns ns ns us uJ
t_r $t_{d(off)}$ t_f E_{on} E_{ts} $t_{d(on)}$	Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss	$\begin{aligned} R_G &= 200\Omega, \ V_{GE} = 15\text{V}, \\ &\text{Inductive Load, } T_C = 25^{\circ}\text{C} \end{aligned}$ $\begin{aligned} V_{CC} &= 300 \ \text{V}, \ I_C = 1.2\text{A}, \\ R_G &= 200\Omega, \ V_{GE} = 15\text{V}, \\ &\text{Inductive Load, } T_C = 125^{\circ}\text{C} \end{aligned}$		20 80 95 30 13 43 19 24 115 176 36 27 63 9	 130 160 70 200 250 100	ns ns uJ uJ ns ns ns us uJ uJ ns ns ns ns ns ns

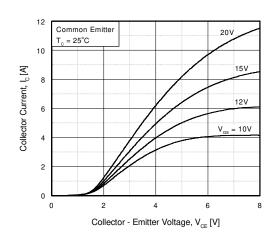


Fig 1. Typical Output Characteristics

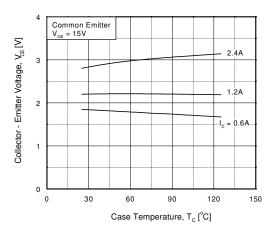


Fig 3. Saturation Voltage vs. Case
Temperature at Variant Current Level

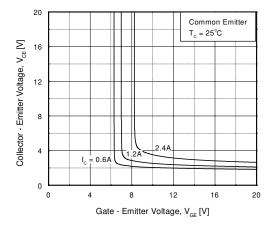


Fig 5. Saturation Voltage vs. V_{GE}

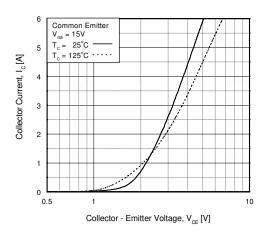


Fig 2. Typical Saturation Voltage Characteristics

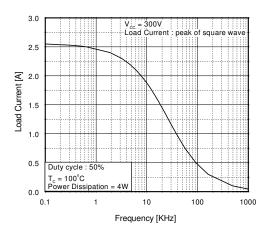


Fig 4. Load Current vs. Frequency

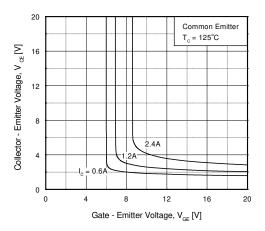
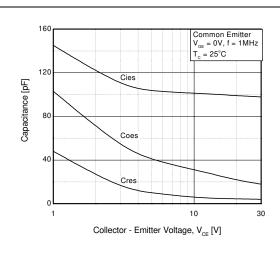



Fig 6. Saturation Voltage vs. V_{GE}

©2003 Fairchild Semiconductor Corporation

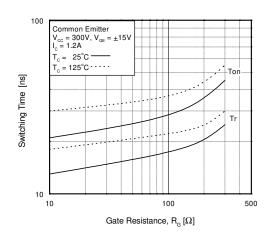
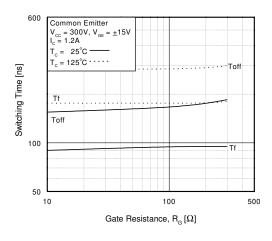



Fig 7. Capacitance Characteristics

Fig 8. Turn-On Characteristics vs. Gate Resistance

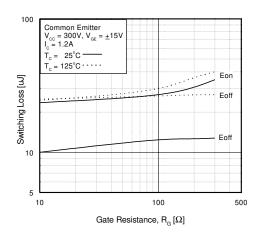
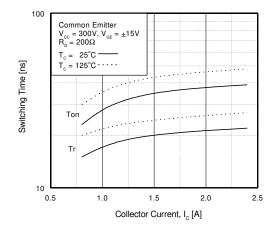



Fig 9. Turn-Off Characteristics vs. Gate Resistance

Fig 10. Switching Loss vs. Gate Resistance

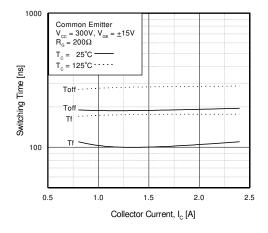
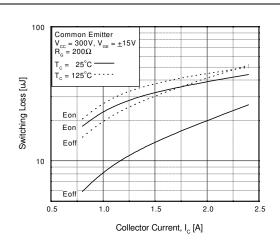



Fig 11. Turn-On Characteristics vs. Collector Current

Fig 12. Turn-Off Characteristics vs. Collector Current

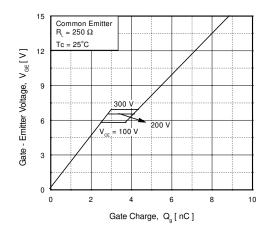
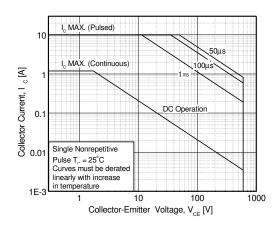



Fig 13. Switching Loss vs. Collector Current

Fig 14. Gate Charge Characteristics

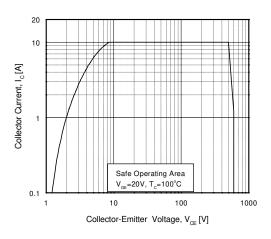
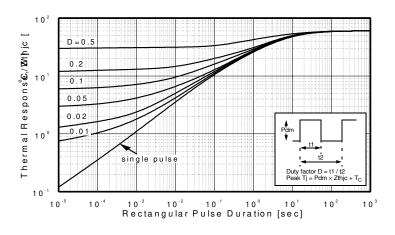
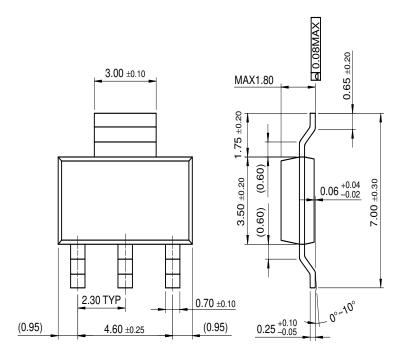
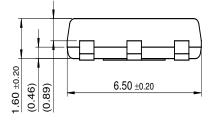


Fig 15. SOA Characteristics

Fig 16. Turn-Off SOA Characteristics


Fig 17. Transient Thermal Impedance of IGBT

©2003 Fairchild Semiconductor Corporation SGM2N60UF Rev. A

Package Dimension

SOT-223

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FACT Quiet Series™ LittleFET™ Power247™ **ACEx™** SuperSOT™-6 PowerTrench® FAST® SuperSOTTM-8 ActiveArray™ MICROCOUPLER™ $\mathsf{QFET}^{\texttt{®}}$ FASTr™ Bottomless™ MicroFET™ SvncFET™ CoolFET™ FRFET™ MicroPak™ QSTM TinyLogic[®] $CROSSVOLT^{TM}$ GlobalOptoisolator™ MICROWIRE™ QT Optoelectronics™ TINYOPTO™ DOME™ $\mathsf{G}\mathsf{T}\mathsf{O}^{\mathsf{TM}}$ MSX^{TM} TruTranslation™ Quiet Series™ $\mathsf{HiSeC^{\mathsf{TM}}}$ UHC™ EcoSPARK™ $MSXPro^{TM}$ RapidConfigure™ I²CTM UltraFET® OCX^{TM} E²CMOSTM RapidConnect™ SILENT SWITCHER® EnSigna™ ImpliedDisconnect™ OCXPro[™] VCX^{TM} OPTOLOGIC® FACT™ ISOPLANAR™ SMART START™ SPM^TM **OPTOPLANAR™** Across the board. Around the world.™ PACMAN™ Stealth™ The Power Franchise™ РОРТМ SuperSOT™-3 Programmable Active Droop™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2003 Fairchild Semiconductor Corporation Rev. I5