imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAIRCHILD

SEMICONDUCTOR®

SGP13N60UFD

Ultra-Fast IGBT

General Description

Fairchild's UFD series of Insulated Gate Bipolar Transistors (IGBTs) provides low conduction and switching losses. The UFD series is designed for applications such as motor control and general inverters where high speed switching is a required feature.

Features

- High speed switching
- Low saturation voltage : $V_{CE(sat)} = 2.1 \text{ V} @ I_C = 6.5 \text{A}$
- High input impedance
- CO-PAK, IGBT with FRD : t_{rr} = 37ns (typ.)

Applications

AC & DC motor controls, general purpose inverters, robotics, and servo controls.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

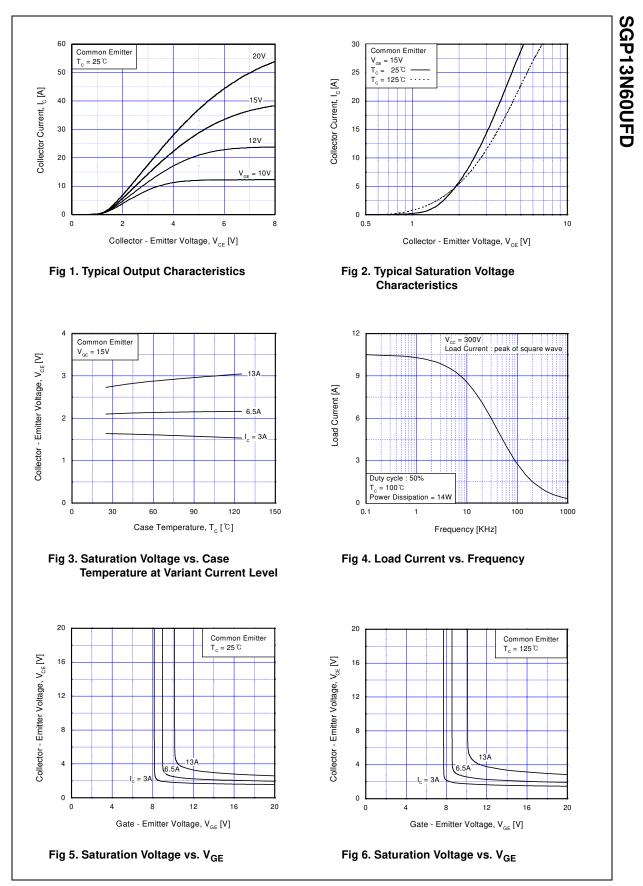
Symbol	Description		Description SGP13N60UFD		SGP13N60UFD	Units	
V _{CES}	Collector-Emitter Voltage		600	V			
V _{GES}	Gate-Emitter Voltage		± 20	V			
I _C	Collector Current	@ T _C = 25°C	13	А			
	Collector Current	@ T _C = 100°C	6.5	А			
I _{CM (1)}	Pulsed Collector Current		52	Α			
I _F	Diode Continuous Forward Current @ T _C = 100°C		8	А			
I _{FM}	Diode Maximum Forward Current		56	A			
P _D	Maximum Power Dissipation	@ T _C = 25°C	60	W			
	Maximum Power Dissipation	@ T _C = 100°C	25	W			
TJ	Operating Junction Temperature		-55 to +150	°C			
T _{stg}	Storage Temperature Range		-55 to +150	°C			
TL	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Seconds		300	°C			

Notes: (1) Repetitive rating : Pulse width limited by max. junction temperature

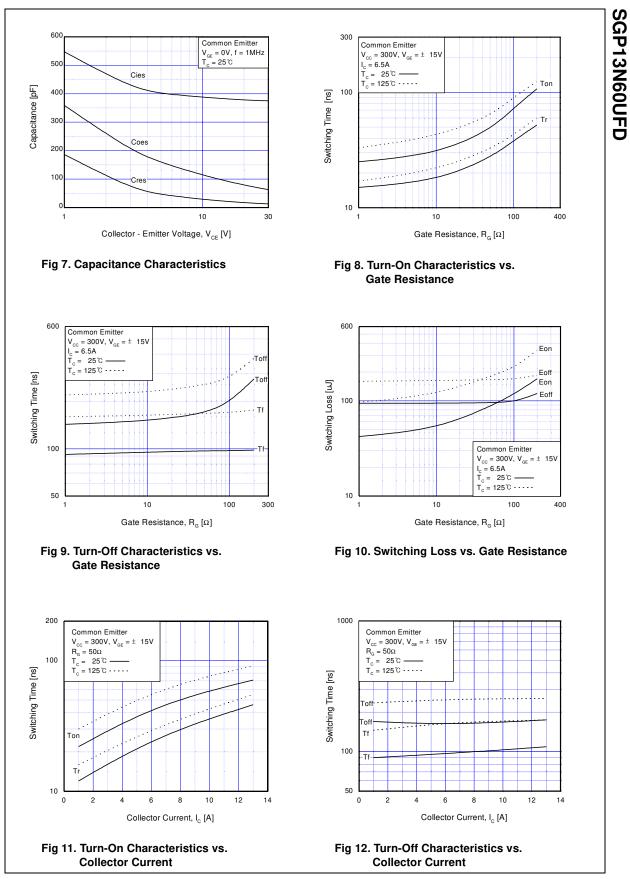
Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
R _{0JC} (IGBT)	Thermal Resistance, Junction-to-Case		2.0	°C/W
R _{0JC} (DIODE)	Thermal Resistance, Junction-to-Case		3.5	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

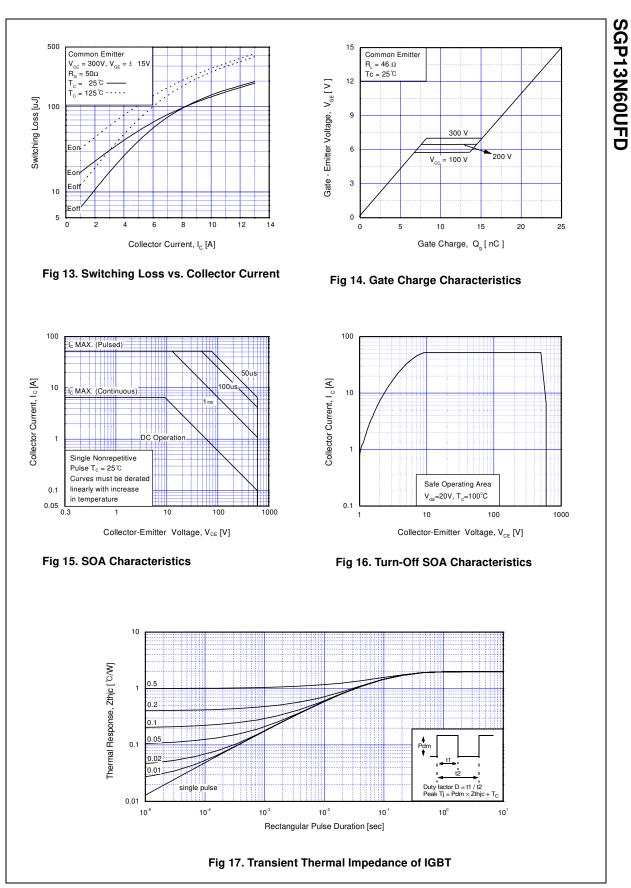
SGP13N60UFD

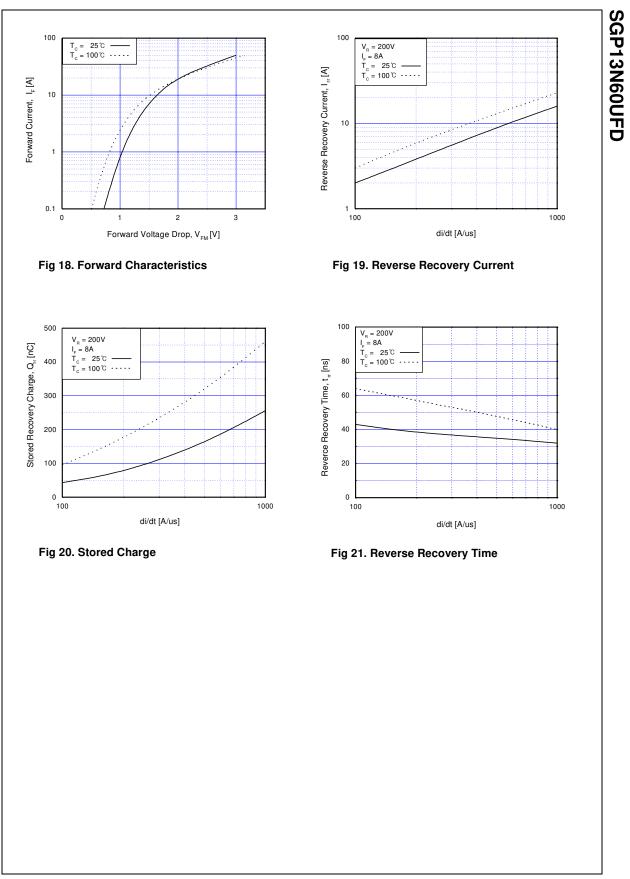

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	ge V _{GE} = 0V, I _C = 250uA				V
ΔB _{VCES} / ΔT _J	Temperature Coeff.icient of Break- down Voltage	$V_{GE} = 0V, I_C = 1mA$		0.6		V/∘C
CES	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			250	uA
GES	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nA
On Chai	racteristics					
V _{GE(th)}	G-E Threshold Voltage	$I_{C} = 6.5 \text{mA}, V_{CE} = V_{GE}$	3.5	4.5	6.5	۷
	Collector to Emitter	I _C = 6.5A, V _{GE} = 15V		2.1	2.6	V
V _{CE(sat)}	Saturation Voltage	I _C = 13A, V _{GE} = 15V		2.6		۷
	c Characteristics			375		~ [
C _{ies}	Input Capacitance	$V_{CE} = 30V_{V_{GE}} = 0V_{V_{GE}}$				pF
C _{oes} C _{res}	Output Capacitance Reverse Transfer Capacitance	-f = 1MHz		63 13		pF pF
d(on)	ng Characteristics			20	1	
	Tulli-Oli Delay Tille					nc
	Rise Time	_		-		ns ns
•	Rise Time	 		27		ns
td(off)	Turn-Off Delay Time	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 6.5\text{A},$		27 70	 130	ns ns
d(off) f	Turn-Off Delay Time Fall Time	R _G = 50Ω, V _{GE} = 15V,	 	27 70 97	 130 150	ns ns ns
d(off) f =on	Turn-Off Delay Time Fall Time Turn-On Switching Loss			27 70 97 85	 130	ns ns ns uJ
f Eon Eoff	Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss	R _G = 50Ω, V _{GE} = 15V,		27 70 97	 130 150 	ns ns ns
id(off) if Eon Eoff Ets	Turn-Off Delay Time Fall Time Turn-On Switching Loss	R _G = 50Ω, V _{GE} = 15V,	 	27 70 97 85 95	 130 150 	ns ns ns uJ uJ
t d(off) t Eon Eoff Ets td(on)	Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss	R _G = 50Ω, V _{GE} = 15V,	 	27 70 97 85 95 180	 130 150 270	ns ns uJ uJ uJ
t _{d(off)} Eon Eoff Ets t _d (on) t _r	Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time	$R_G = 50\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$	 	27 70 97 85 95 180 30	 130 150 270 	ns ns uJ uJ uJ ns
ld(off) Eon Eon Ets Id(on) Id(off)	Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time	$R_{G} = 50\Omega, V_{GE} = 15V,$ Inductive Load, T _C = 25°C $V_{CC} = 300 V, I_{C} = 6.5A,$	 	27 70 97 85 95 180 30 32	 130 150 270 	ns ns uJ uJ uJ ns ns
if Eon Eoff Ets id(on) ir id(off)	Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time	$R_G = 50\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$	 	27 70 97 85 95 180 30 32 85	 130 150 270 2200	ns ns uJ uJ uJ ns ns ns
d(off) f = on = off = off d(on) r d(off) f = on = on	Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Delay Time Fall Time	$eq:rescaled_$	 	27 70 97 85 95 180 30 32 85 168	 130 150 270 270 200 250	ns ns uJ uJ uJ ns ns ns ns
d(off) f = on = off = ts d(on) r d(off) f = on = off = off	Turn-Off Delay Time Fall Time Turn-On Switching Loss Total Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Switching Loss	$eq:rescaled_$	 	27 70 97 85 95 180 30 32 85 168 180	 130 150 270 270 200 250 	ns ns uJ uJ uJ ns ns ns ns uJ
d(off) f f f f f f f f f f f f f	Turn-Off Delay TimeFall TimeTurn-On Switching LossTurn-Off Switching LossTotal Switching LossTurn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTurn-On Switching LossTurn-Off Switching LossTurn-Off Switching Loss	$\label{eq:relation} \begin{array}{l} R_{G}=50\Omega, \ V_{GE}=15V, \\ \mbox{Inductive Load}, \ T_{C}=25^\circC \\ \\ V_{CC}=300 \ V, \ I_{C}=6.5A, \\ \ R_{G}=50\Omega, \ V_{GE}=15V, \\ \mbox{Inductive Load}, \ T_{C}=125^\circC \\ \end{array}$	 	27 70 97 85 95 180 30 32 85 168 180 165	 130 150 270 270 200 250 	ns ns uJ uJ uJ ns ns ns ns uJ uJ
d(off) f Eon Eoff Ets d(on) f d(off) f Eon Eoff Eoff Eoff Eoff Egg	Turn-Off Delay TimeFall TimeTurn-On Switching LossTurn-Off Switching LossTotal Switching LossTurn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTurn-On Switching LossTurn-Off Switching LossTurn-Off Switching LossTotal Switching LossTotal Switching Loss	$eq:rescaled_$	 	27 70 97 85 95 180 30 32 85 168 180 165 345	 130 150 270 200 250 500	ns ns uJ uJ uJ ns ns ns ns uJ uJ uJ
tr td(off) Eon Ets td(on) tr td(off) tf Eon Ets Qg Qg Qgc	Turn-Off Delay TimeFall TimeTurn-On Switching LossTurn-Off Switching LossTotal Switching LossTurn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTurn-On Switching LossTurn-Off Switching LossTurn-Off Switching LossTotal Switching LossTotal Switching LossTotal Switching LossTotal Gate Charge	$\label{eq:relation} \begin{array}{l} R_{G}=50\Omega, \ V_{GE}=15V, \\ \mbox{Inductive Load}, \ T_{C}=25^\circC \\ \\ V_{CC}=300 \ V, \ I_{C}=6.5A, \\ \ R_{G}=50\Omega, \ V_{GE}=15V, \\ \mbox{Inductive Load}, \ T_{C}=125^\circC \\ \end{array}$	 	27 70 97 85 95 180 30 32 85 168 180 165 345 25	 130 150 270 270 250 250 500 35	ns ns uJ uJ uJ ns ns ns ns uJ uJ uJ uJ

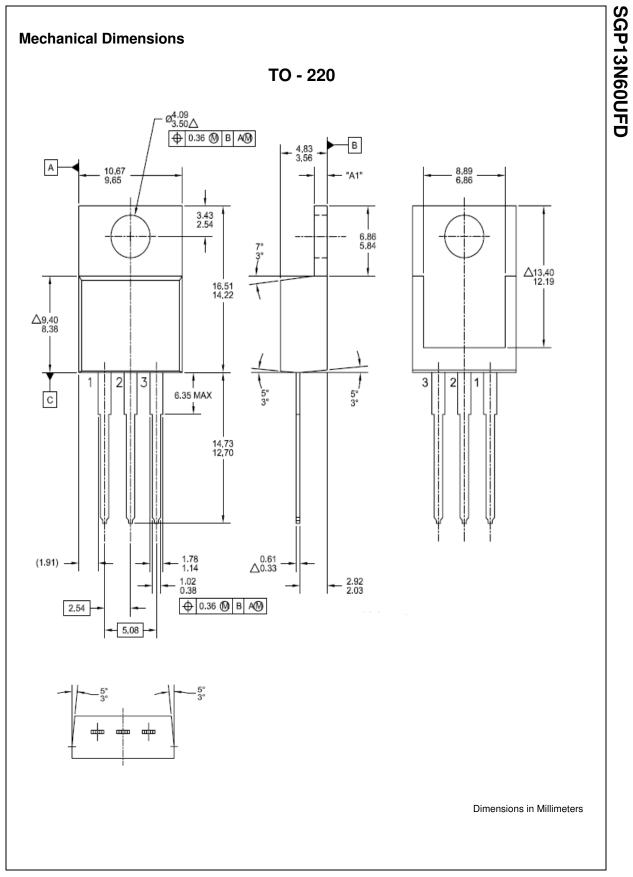
Electrical Characteristics of DIODE $T_{C} = 25^{\circ}C$ unless otherwise noted


Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Units
V	Diode Forward Voltage	1 94	$T_{C} = 25^{\circ}C$		1.4	1.7	v
V _{FM} Diode Forward Voltage	I _F = 8A	$T_{C} = 100^{\circ}C$		1.3		v	
t _{rr} Diode Reverse Recovery Time		$T_{C} = 25^{\circ}C$		37	55	20	
		$T_{C} = 100^{\circ}C$		55		ns	
1	Diode Peak Reverse Recovery	I _F = 8A,	$T_{C} = 25^{\circ}C$		3.5	5.0	Α
Irr	rr Current	di/dt = 200A/us	$T_{C} = 100^{\circ}C$		4.5		A
Q _{rr}	Diode Reverse Recovery Charge		$T_{C} = 25^{\circ}C$		65	138	
			T _C = 100°C		124		nC

SGP13N60UFD


©2002 Fairchild Semiconductor Corporation




SGP13N60UFD Rev. A1

SGP13N60UFD Rev. A1

SGP13N60UFD Rev. A1

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[™] Bottomless[™] CoolFET[™] *CROSSVOLT*[™] DenseTrench[™] DOME[™] EcoSPARK[™] E²CMOS[™] EnSigna[™] FACT[™] FACT Quiet Series[™]

FAST®MIFASTrTMOIFRFETTMOIGlobalOptoisolatorTMPAGTOTMPCHiSeCTMPCISOPLANARTMQILittleFETTMQSMicroFETTMQCMicroPakTMQI

MICROWIRE™ OPTOLOGIC™ OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench[®] QFET™ QS™ QT Optoelectronics™ Quiet Series™ SLIENT SWITCHER[®] UHCTM SMART STARTTM UltraFET[®] SPMTM VCXTM StealthTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 SyncFETTM TinyLogicTM TruTranslationTM

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.