

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

April 2001

IGBT

SGS10N60RUF

Short Circuit Rated IGBT

General Description

Fairchild's RUF series of Insulated Gate Bipolar Transistors (IGBTs) provide low conduction and switching losses as well as short circuit ruggedness. The RUF series is designed for applications such as motor control, uninterrupted power supplies (UPS) and general inverters where short circuit ruggedness is a required feature.

Features

- Short circuit rated 10us @ $T_C = 100$ °C, $V_{GE} = 15V$
- · High speed switching
- Low saturation voltage : $V_{CE(sat)} = 2.2 \text{ V}$ @ $I_C = 10 \text{A}$
- · High input impedance

Application

AC & DC Motor controls, general purpose inverters, robotics, servo controls

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		SGS10N60RUF	Units
V _{CES}	Collector-Emitter Voltage		600	V
V _{GES}	Gate-Emitter Voltage		± 20	V
I _C	Collector Current	@ T _C = 25°C	16	Α
	Collector Current	@ T _C = 100°C	10	Α
I _{CM (1)}	Pulsed Collector Current		30	Α
	Short Circuit Withstand Time	@ T _C = 100°C	10	μs
T _{SC}	Maximum Power Dissipation	@ T _C = 25°C	55	W
	Maximum Power Dissipation	@ T _C = 100°C	22	W
T _J	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Notes

(1) Repetitive rating : Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		2.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Chai	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 250uA$	600			٧
ΔB _{VCES} / ΔΤ _J	Temperature Coeff. of Breakdown Voltage	$V_{GE} = 0V, I_C = 1mA$		0.6		V/°C
I _{CES}	Collector Cut-off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			250	μΑ
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nA
On Chai	acteristics					
	G-E Threshold Voltage	$I_C = 10mA$, $V_{CE} = V_{GE}$	5.0	6.0	8.5	V
V _{GE(th)}	Collector to Emitter	$I_C = 10HA$, $V_{GE} = V_{GE}$	J.0 	2.2	2.8	V
$V_{CE(sat)}$	Saturation Voltage	$I_C = 16A$, $V_{GE} = 15V$		2.5		V
	Catalan Foliage	10 - 10A, VGE - 15V		2.5		٧
Dynami	c Characteristics					
C _{ies}	Input Capacitance	V 20V V 0V		660		pF
C _{oes}	Output Capacitance	$V_{CE} = 30V, V_{GE} = 0V,$ f = 1MHz		115		pF
C _{res}	Reverse Transfer Capacitance	I = IMINZ		25		pF
	Turn-On Delay Time			15		ns
t _{d(on)}						
t _r	Rise Time			30		ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 300 \text{ V}, I_{C} = 10\text{A},$		36	50	nS
t _f	Fall Time	$R_G = 20\Omega$, $V_{GE} = 15V$,		158	200	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 25°C		141		μJ
E _{off}	Turn-Off Switching Loss			215		μJ
E _{ts}	Total Switching Loss			356	500	μJ
t _{d(on)}	Turn-On Delay Time			16		ns
t _r	Rise Time			33		ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 300 \text{ V}, I_{C} = 10\text{A},$		42	60	ns
t _f	Fall Time	$R_{G} = 20\Omega, V_{GE} = 15V,$		242	350	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 125°C		161		μJ
E _{off}	Turn-Off Switching Loss			452		μJ
E _{ts}	Total Switching Loss			613	860	μJ
T _{sc}	Short Circuit Withstand Time	V _{CC} = 300 V, V _{GE} = 15V @ T _C = 100°C	10			μs
Q _g	Total Gate Charge			30	45	nC
Q_{ge}	Gate-Emitter Charge	$V_{CE} = 300 \text{ V}, I_{C} = 10\text{A},$		5	10	nC
Q _{qc}	Gate-Collector Charge	V _{GE} = 15V		8	16	nC
		1		1		

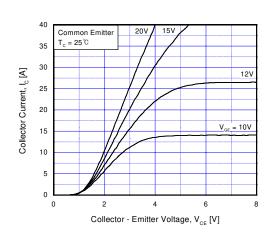


Fig 1. Typical Output Chacracteristics

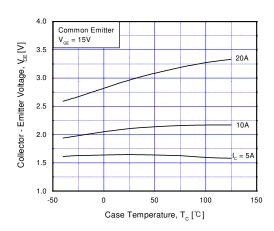


Fig 3. Saturation Voltage vs. Case Temperature at Variant Current Level

Fig 5. Saturation Voltage vs. V_{GE}

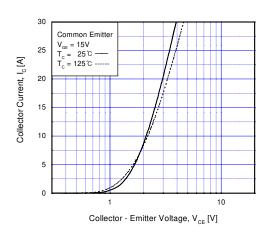


Fig 2. Typical Saturation Voltage Characteristics

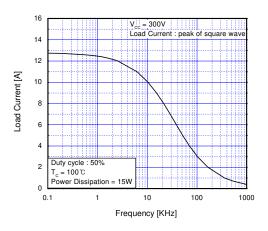


Fig 4. Load Current vs. Frequency

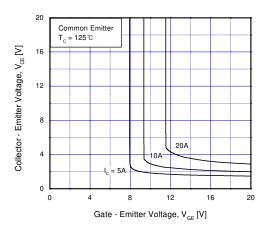


Fig 6. Saturation Voltage vs. $V_{\rm GE}$

©2001 Fairchild Semiconductor Corporation

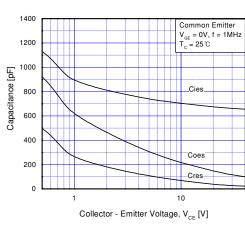


Fig 7. Capacitance Characteristics

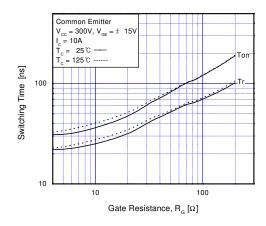


Fig 8. Turn-On Characteristics vs. **Gate Resistance**

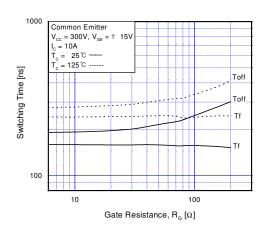


Fig 9. Turn-Off Characteristics vs. **Gate Resistance**

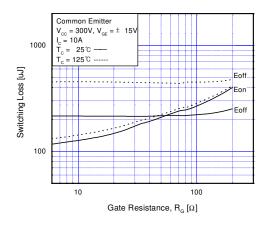


Fig 10. Switching Loss vs. Gate Resistance

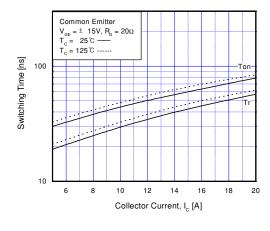


Fig 11. Turn-On Characteristics vs. **Collector Current**

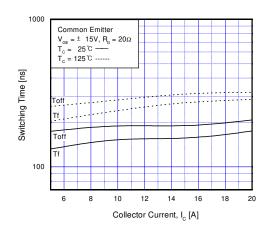
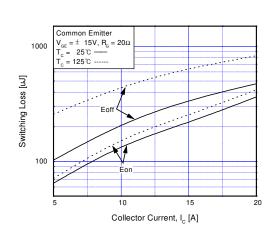



Fig 12. Turn-Off Characteristics vs. **Collector Current**

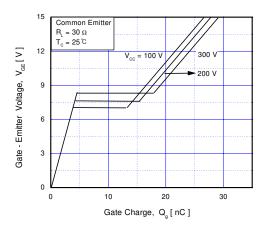
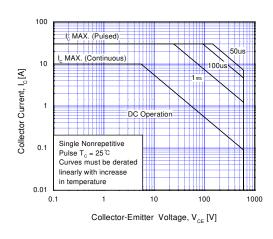



Fig 13. Switching Loss vs. Collector Current

Fig 14. Gate Charge Characteristics

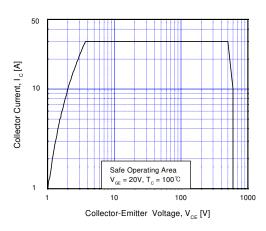


Fig 15. SOA Characteristics

Fig 16. Turn-Off SOA Characteristics

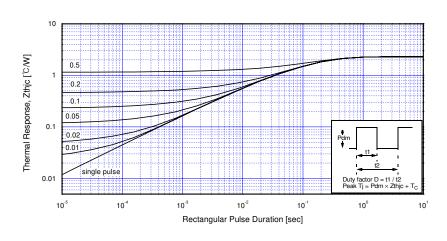
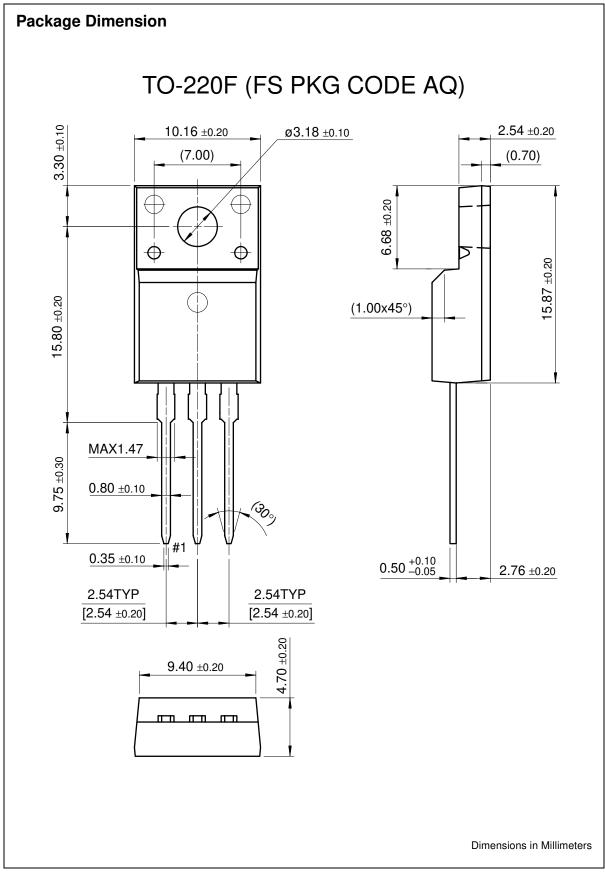



Fig 17. Transient Thermal Impedance of IGBT

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$	FAST [®]	PACMAN™	SuperSOT™-3
Bottomless™	FASTr™	POP™	SuperSOT™-6
CoolFET™	GlobalOptoisolator™	PowerTrench [®]	SuperSOT™-8
CROSSVOLT™	GTO™	QFET™	SyncFET™
DenseTrench™	HiSeC™	QS™	TinyLogic™
DOME™	ISOPLANAR™	QT Optoelectronics™	UHC™
EcoSPARK™	LittleFET™	Quiet Series™	UltraFET [®]
E ² CMOS™	MicroFET™	SLIENT SWITCHER®	VCX™
EnSigna™	MICROWIRE™	SMART START™	
FACT™	OPTOLOGIC™	Star* Power™	
FACT Quiet Series™	OPTOPLANAR™	Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2001 Fairchild Semiconductor Corporation