imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAIRCHILD

SEMICONDUCTOR IM

SGS6N60UF Ultra-Fast IGBT

General Description

Fairchild's UF series of Insulated Gate Bipolar Transistors (IGBTs) provides low conduction and switching losses. The UF series is designed for applications such as motor control and general inverters where high speed switching is a required feature.

Features

- High speed switching
- Low saturation voltage : $V_{CE(sat)} = 2.1 \text{ V} @ I_C = 3 \text{ A}$
- High input impedance

Application

AC & DC Motor controls, general purpose inverters, robotics, servo controls

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		SGS6N60UF	Units
V _{CES}	Collector-Emitter Voltage		600	V
V _{GES}	Gate-Emitter Voltage		± 20	V
	Collector Current	@ T _C = 25°C	6	A
I _C Collector Current @		@ T _C = 100°C	3	A
I _{CM (1)}	Pulsed Collector Current		25	A
PD	Maximum Power Dissipation	@ T _C = 25°C	22	W
	Maximum Power Dissipation	@ T _C = 100°C	9	W
Тј	Operating Junction Temperature		-55 to +150	°C
T _J T _{stg}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for soldering purposes, 1/8" from case for 5 seconds		300	°C

Notes :

(1) Repetitive rating : Pulse width limited by max. junction temperature

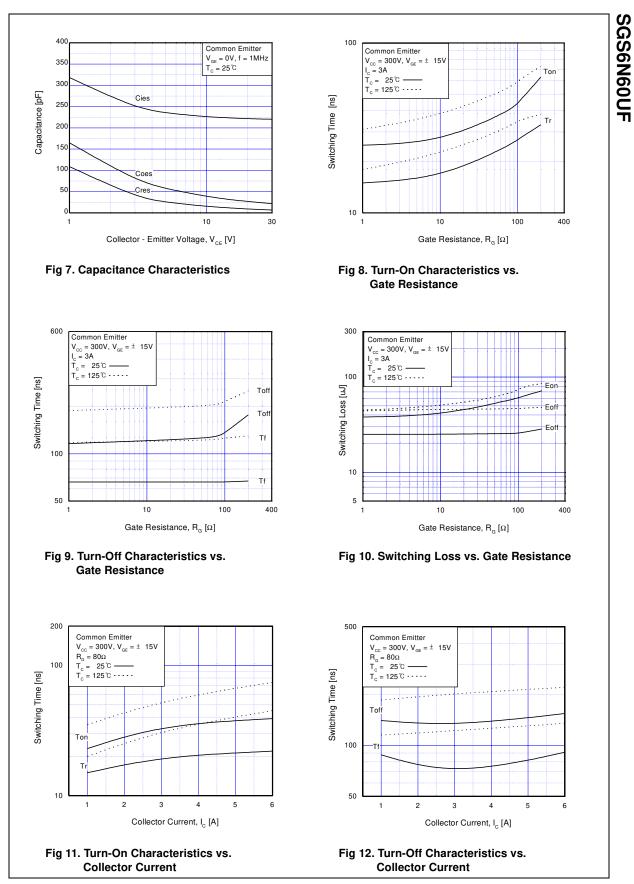
Thermal Characteristics

Symbol	Parameter		Max.	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		5.5	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

SGS6N60UF

IGBT

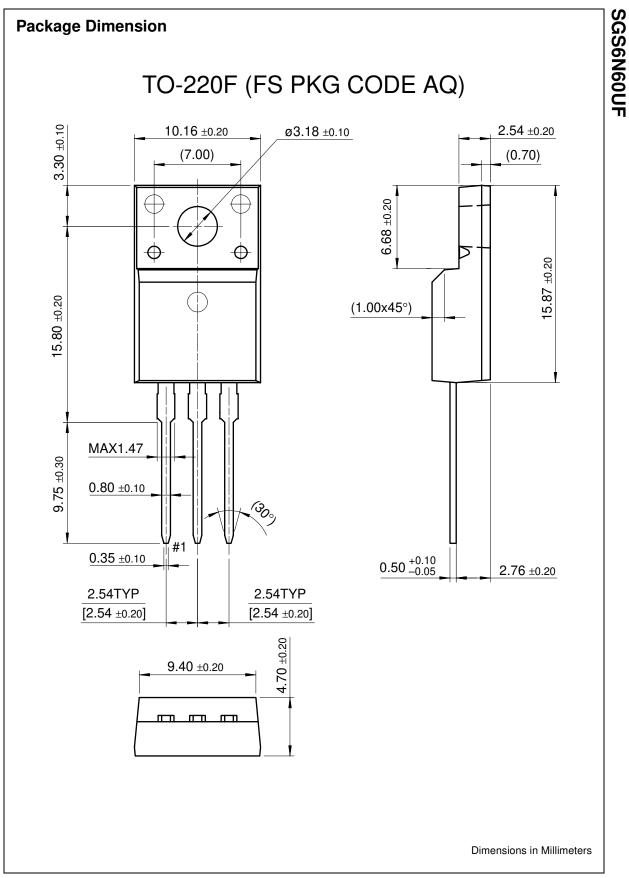
©2001 Fairchild Semiconductor Corporation


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 250uA$	600			V
∆B _{VCES} / ∆T _J	Temperature Coeff. of Breakdown Voltage	$V_{GE} = 0V, I_C = 1mA$		0.6		V/°C
CES	Collector Cut-off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			250	μA
GES	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nA
On Chai	racteristics					
V _{GE(th)}	G-E Threshold Voltage	$I_{C} = 3mA, V_{CE} = V_{GE}$	3.5	4.5	6.5	V
	Collector to Emitter	I _C = 3A, V _{GE} = 15V		2.1	2.6	V
/ _{CE(sat)}	Saturation Voltage	$I_C = 6A$, $V_{GE} = 15V$		2.6		V
Dynami C _{ies}	C Characteristics			220		pF
C _{oes}	Output Capacitance	$V_{CE} = 30V_{,} V_{GE} = 0V_{,}$		22		pF
C _{res}	Reverse Transfer Capacitance	f = 1MHz		7		pF
d(on)	Turn-On Delay Time	_		15		ns
r	Rise Time			25		ns
d(off)	Turn-Off Delay Time	V _{CC} = 300 V, I _C = 3A,		60	130	ns
f	Fall Time	$R_{G} = 80\Omega, V_{GE} = 15V,$		70	150	ns
Eon	Turn-On Switching Loss	Inductive Load, T _C = 25°C		57		μJ
off	Turn-Off Switching Loss			25		μJ
= ts	Total Switching Loss			82	120	μJ
d(on)	Turn-On Delay Time			22		ns
	Rise Time			32		ns
r	Turn-Off Delay Time	$V_{\rm CC} = 300 \text{ V}, \text{ I}_{\rm C} = 3\text{A},$		80	200	ns
	-	R _G = 80Ω, V _{GE} = 15V,		122	300	ns
d(off)	Fall Time			65		μJ
d(off) f E _{on}	Fall Time Turn- On Switching Loss	Inductive Load, $T_C = 125^{\circ}C$				μJ
E _{d(off)} E _{on} E _{off}				46		μŪ
d(off) f Eon Eoff Ets	Turn- On Switching Loss Turn- Off Switching Loss Total Switching Loss			46 111	170	μJ
d(off) f Eon Eoff Ets Qg	Turn- On Switching Loss Turn- Off Switching Loss	Inductive Load, T _C = 125°C		46 111 15		
if Eon Eoff Ets Qg Qge	Turn- On Switching Loss Turn- Off Switching Loss Total Switching Loss	Inductive Load, $T_C = 125^{\circ}C$ V _{CE} = 300 V, I _C = 3A,		46 111 15 5	170 22 8	μJ
t _r td(off) tft E_off Q_g Q_ge Q_gc	Turn- On Switching Loss Turn- Off Switching Loss Total Switching Loss Total Gate Charge	Inductive Load, T _C = 125°C		46 111 15	170 22	μJ nC

SGS6N60UF

©2001 Fairchild Semiconductor Corporation

SGS6N60UF Rev. A


©2001 Fairchild Semiconductor Corporation

SGS6N60UF Rev. A

200 15 Common Emitter Common Emitter R_L = 100 Ω Tc = 25 °C $V_{cc} = 300 \text{V}, \text{ V}_{ge} = \pm 15 \text{V}$ $R_{g} = 80\Omega$ 100 12 Gate - Emitter Voltage, V_{GE} [V] = 25°C T_ = 125 °C · · · · · Switching Loss [uJ] 9 300 Eor 6 Eor 200 V V_{cc} = 100 V Eoff 3 10 Eoff 5 0 5 2 3 6 3 12 0 6 9 15 Collector Current, I_C [A] Gate Charge, Qg [nC] Fig 13. Switching Loss vs. Collector Current Fig 14. Gate Charge Characteristics 100 50 Ic MAX. (Pulsed) 10 10 Collector Current, I_c [A] Collector Current, I_c [A] Ic MAX. (Continuous) 1 DC Operation 1 Single Nonrepetitive Pulse $T_c = 25$ °C Curves must be derated 0.1 Safe Operating Area linerarly with increase 0.01 L 0.3 V_{GE}=20V, T_c=100°C in temperature 0.1 10 100 1000 10 100 1000 1 Collector-Emitter Voltage, V_{CE} [V] Collector-Emitter Voltage, V_{CE} [V] Fig 15. SOA Characteristics Fig 16. Turn-Off SOA Characteristics 10 0.5 Thermal Response, Zthjc [°C/W] 0.2 1 0.1 0.05 0.02 0.1 0.01 single pulse Duty factor D = t1 / t2 Peak Tj = Pdm \times Zthjc + 0.01 10 10-4 10⁻³ 10⁻² 10⁻¹ 10[°] 10¹ Rectangular Pulse Duration [sec] Fig 17. Transient Thermal Impedance of IGBT

©2001 Fairchild Semiconductor Corporation

SGS6N60UF

©2001 Fairchild Semiconductor Corporation

SGS6N60UF Rev. A

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	PACMAN™	SuperSOT™-3
Bottomless™	FASTr™	POP™	SuperSOT™-6
CoolFET™	GlobalOptoisolator™	PowerTrench [®]	SuperSOT™-8
CROSSVOLT™	GTO™	QFET™	SyncFET™
DenseTrench™	HiSeC™	QS™	TinyLogic™
DOME™	ISOPLANAR™	QT Optoelectronics [™]	UHC™
EcoSPARK™	LittleFET™	Quiet Series™	UltraFET [®]
E ² CMOS™	MicroFET™	SLIENT SWITCHER [®]	VCX™
EnSigna™	MICROWIRE™	SMART START™	
FACT™	OPTOLOGIC™	Star* Power™	
FACT Quiet Series™	OPTOPLANAR™	Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.