

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IGBT

SGW23N60UFD

Ultra-Fast IGBT

General Description

Fairchild's UFD series of Insulated Gate Bipolar Transistors (IGBTs) provides low conduction and switching losses. The UFD series is designed for applications such as motor control and general inverters where high speed switching is a required feature.

Features

- · High speed switching
- Low saturation voltage : $V_{CE(sat)} = 2.1 \text{ V } @ I_C = 12 \text{A}$
- · High input impedance
- CO-PAK, IGBT with FRD : t_{rr} = 42ns (typ.)

Applications

AC & DC motor controls, general purpose inverters, robotics, and servo controls.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		SGW23N60UFD	Units
V _{CES}	Collector-Emitter Voltage		600	V
V_{GES}	Gate-Emitter Voltage		± 20	V
	Collector Current	@ T _C = 25°C	23	Α
I _C	Collector Current	@ T _C = 100°C	12	Α
I _{CM (1)}	Pulsed Collector Current		92	Α
I _F	Diode Continuous Forward Current	@ T _C = 100°C	12	Α
I _{FM}	Diode Maximum Forward Current		92	Α
P_{D}	Maximum Power Dissipation	@ T _C = 25°C	100	W
	Maximum Power Dissipation	@ T _C = 100°C	40	W
TJ	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Seconds		300	°C

Notes :

 $(1) \ Repetitive \ rating: Pulse \ width \ limited \ by \ max. \ junction \ temperature$

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction-to-Case		1.2	°C/W
$R_{\theta JC}(DIODE)$	Thermal Resistance, Junction-to-Case		2.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (PCB Mount) (2)		40	°C/W

Notes :

(2) Mounted on 1" squre PCB (FR4 or G-10 Material)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 250uA$	600			V
ΔB _{VCES} / ΔΤ _J	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0V, I _C = 1mA		0.6		V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			250	uA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nA
On Chai	racteristics					
V _{GE(th)}	G-E Threshold Voltage	$I_C = 12mA$, $V_{CE} = V_{GE}$	3.5	4.5	6.5	V
	Collector to Emitter	I _C = 12A, V _{GE} = 15V		2.1	2.6	٧
V _{CE(sat)}	Saturation Voltage	$I_C = 23A$, $V_{GE} = 15V$		2.6		V
Dvnami	c Characteristics					
C _{ies}	Input Capacitance	.,		720		pF
C _{oes}	Output Capacitance	$V_{CE} = 30V, V_{GE} = 0V,$		100		pF
C _{res}	Reverse Transfer Capacitance	f = 1MHz		25		pF
Switchir	ng Characteristics			T		
t _{d(on)}	Turn-On Delay Time			17		ns
t _r	Rise Time			27		ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 300 \text{ V}, I_{C} = 12\text{A},$		60	130	ns
t _f	Fall Time	$R_G = 23\Omega, V_{GE} = 15V,$		70	150	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 25°C		115		uJ
E _{off}	Turn-Off Switching Loss			135		uJ
E _{ts}	Total Switching Loss			250	400	uJ
t _{d(on)}	Turn-On Delay Time			23		ns
t _r	Rise Time			32		ns
$t_{d(off)}$	Turn-Off Delay Time	$V_{CC} = 300 \text{ V}, I_{C} = 12\text{A},$		100	200	ns
t _f	Fall Time	$R_G = 23\Omega, V_{GE} = 15V,$		220	250	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 125°C		205		uJ
E _{off}	Turn-Off Switching Loss			320		uJ
E _{ts}	Total Switching Loss			525	800	uJ
Q _q	Total Gate Charge	V 200 V I 104		49	80	nC
Q _{ge}	Gate-Emitter Charge	$V_{CE} = 300 \text{ V}, I_{C} = 12\text{A},$ $V_{GE} = 15\text{V}$		11	17	nC
3~	-	⊣ VGE = 13V	-	+		_
Q_{gc}	Gate-Collector Charge	GL		14	22	nC

Electrical Characteristics of DIODE $T_{C} = 25^{\circ}\text{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Units
V	Diode Forward Voltage	I _F = 12A	$T_C = 25^{\circ}C$		1.4	1.7	V
V_{FM}			T _C = 100°C		1.3		
+	Diode Reverse Recovery Time		$T_C = 25^{\circ}C$		42	60	no
t _{rr}	blode neverse necovery filme	erse necovery fillie	T _C = 100°C		80		ns
	Diode Peak Reverse Recovery	I _F = 12A,	$T_C = 25^{\circ}C$		3.5	6.0	Α
^I rr	Current	di/dt = 200A/us	T _C = 100°C		5.6		_ A
	Diode Reverse Recovery Charge		$T_C = 25^{\circ}C$		80	180	nC
Q_{rr}			T _C = 100°C		220		110

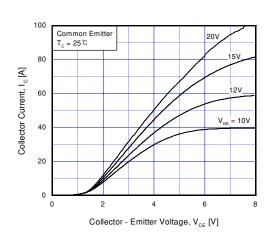
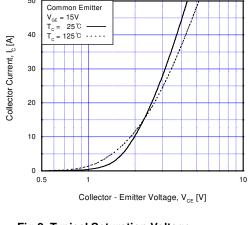



Fig 1. Typical Output Characteristics

50

Fig 2. Typical Saturation Voltage Characteristics

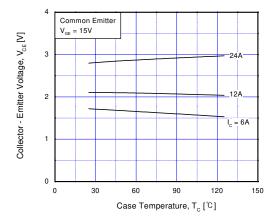


Fig 3. Saturation Voltage vs. Case
Temperature at Variant Current Level

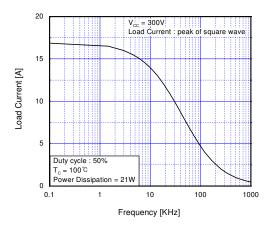


Fig 4. Load Current vs. Frequency

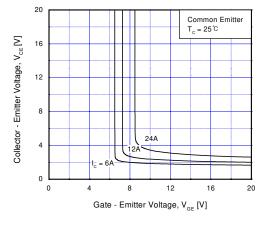
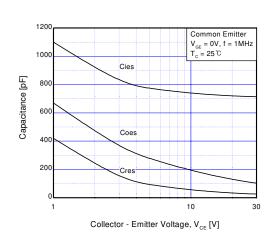
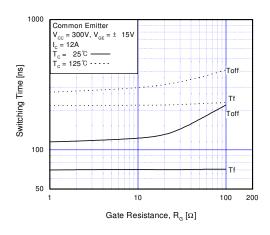



Fig 5. Saturation Voltage vs. V_{GE}

Fig 6. Saturation Voltage vs. $V_{\rm GE}$


©2002 Fairchild Semiconductor Corporation

Common Emitter $V_{CC} = 300V, V_{GE} = \pm 15V$ $I_C = 12A$ $I_C = 125 \, \text{C}$ $I_C = 125$

Fig 7. Capacitance Characteristics

Fig 8. Turn-On Characteristics vs.
Gate Resistance

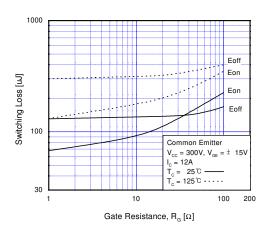
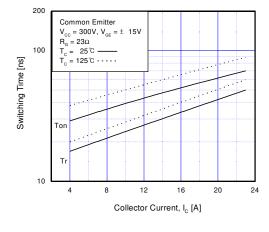



Fig 9. Turn-Off Characteristics vs.
Gate Resistance

Fig 10. Switching Loss vs. Gate Resistance

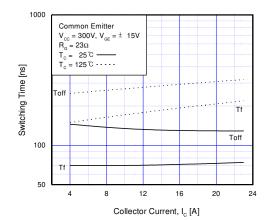
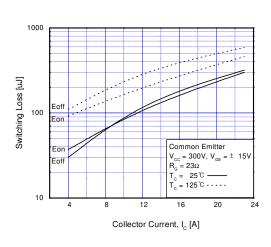
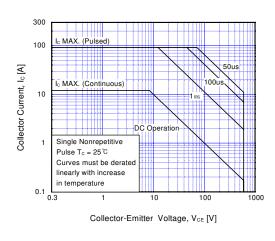



Fig 11. Turn-On Characteristics vs. Collector Current


Fig 12. Turn-Off Characteristics vs. Collector Current

Common Emitter $R_{\rm L}=25~\Omega$ $T_{\rm c}=25~\Omega$ $T_{\rm c}=25~\Omega$ $T_{\rm c}=25~\Omega$ $T_{\rm c}=100~{\rm V}$ $T_{\rm c}=1$

Fig 13. Switching Loss vs. Collector Current

Fig 14. Gate Charge Characteristics

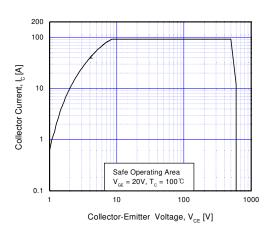


Fig 15. SOA Characteristics

Fig 16. Turn-Off SOA Characteristics

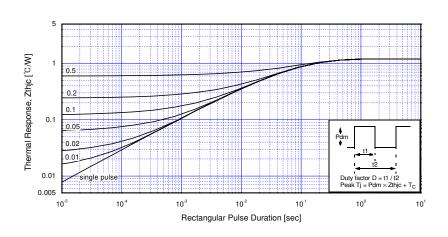
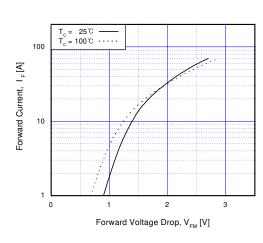



Fig 17. Transient Thermal Impedance of IGBT

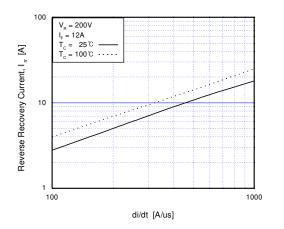
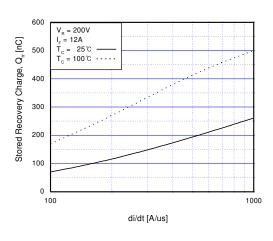



Fig 18. Forward Characteristics

Fig 19. Reverse Recovery Current

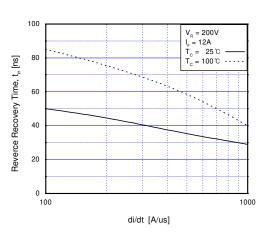
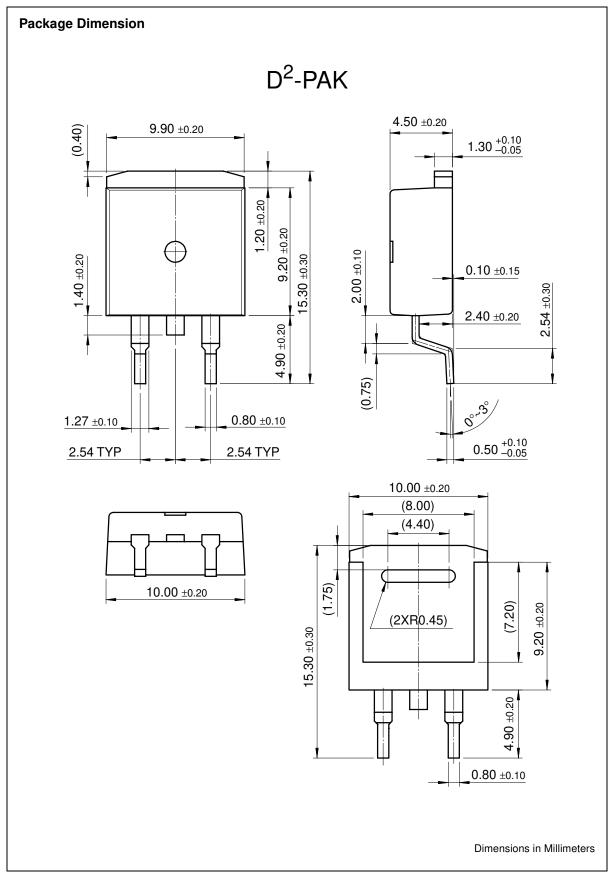



Fig 20. Stored Charge

Fig 21. Reverse Recovery Time

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [™] Bottomless [™] CoolFET [™] CROSSVOLT [™] DenseTrench [™] DOME [™] EcoSPARK [™] E ² CMOS [™] EnSigna [™] EACTIM	FAST® FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ I²C™ ISOPLANAR™ LittleFET™	MICROWIRETM OPTOLOGICTM OPTOPLANARTM PACMANTM POPTM Power247TM PowerTrench® QFETTM QSTM OT Optoploctropics TM	SLIENT SWITCHER® SMART START TM SPM TM STAR*POWER TM Stealth TM SuperSOT TM -3 SuperSOT TM -6 SuperSOT TM -8 SyncFET TM Tipyl ogic TM	UHC™ UltraFET [®] VCX™
EnSigna™ FACT™	LittleFE I ™ MicroFET™	QS™ QT Optoelectronics™	SyncFET™ TinyLogic™	
FACT Quiet Series™	MicroPak™	Quiet Series™	TruTranslation™	

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2002 Fairchild Semiconductor Corporation

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.