imall

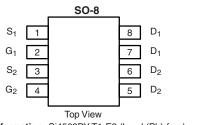
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

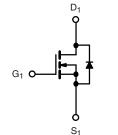
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

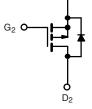


Vishay Siliconix

N- and P-Channel 40-V (D-S) MOSFET

PRODUCT SUMMARY							
	V _{DS} (V)	R_{DS(on)} (Ω)	I _D (A) ^a	Q _g (Typ.)			
N-Channel	40	0.016 at V _{GS} = 10 V	8	56			
		0.019 at V_{GS} = 4.5 V	8	50			
P-Channel	- 40	0.025 at V_{GS} = - 10 V	- 8	6			
		0.032 at V_{GS} = - 4.5 V	- 7.5	0			


Ordering Information: Si4563DY-T1-E3 (Lead (Pb)-free) Si4563DY-T1-GE3 (Lead (Pb)-free and Halogen-free)


FEATURES

- Halogen-free According to IEC 61249-2-21 Available
- TrenchFET[®] Power MOSFET
- 100 % R_g Tested ٠

APPLICATIONS

CCFL Inverter

N-Channel MOSFET

P-Channel MOSFET

 S_2

RoHS

COMPLIANT HALOGEN FREE

Available

ABSOLUTE MAXIMUM RATINGS	S T _A = 25 °C, unle	ess otherwis	e noted		
Parameter	Symbol	N-Channel	P-Channel	Unit	
Drain-Source Voltage	V _{DS}	40	- 40	v	
Gate-Source Voltage		V _{GS}	± 16		- V
	T _C = 25 °C		8	- 8	
Continuous Droin Current (T 150 °C)	T _C = 70 °C	Ι. Γ	8	- 6.5	
Continuous Drain Current ($T_J = 150 \ ^\circ C$)	T _A = 25 °C		8 ^{b, c}	- 6.6 ^{b, c}	1
	T _A = 70 °C	1	6.5 ^{b, c}	- 5.2 ^{b, c}	
Pulsed Drain Current (10 µs Pulse Width)	I _{DM}	20	- 20	Α	
Source-Drain Current Diode Current	T _C = 25 °C		2.7	- 2.7	
	T _A = 25 °C	I _S	1.6 ^{b, c}	- 1.6 ^{b, c}	1
Pulsed Source-Drain Current		I _{SM}	20	- 20	
Single Pulse Avalanche Current	L = 0 1 mH	I _{AS}	20	25	
Single Pulse Avalanche Energy		E _{AS}	20	31.2	mJ
Maximum Power Dissipation	T _C = 25 °C		3.25	3.25	
	T _C = 70 °C		2.10	2.10	
	T _A = 25 °C	- P _D -	2.0 ^{b, c}	2.0 ^{b, c}	W
	T _A = 70 °C	1	1.25 ^{b, c}	1.25 ^{b, c}	
Operating Junction and Storage Temperature Ra	T _J , T _{stg}	- 55 t	o 150	°C	

THERMAL RESISTANCE RATINGS									
			N-Ch	Channel P-Channel					
Parameter			Тур.	Max.	Тур.	Max.	Unit		
Maximum Junction-to-Ambient ^{b, d}	t ≤ 10 s	R _{thJA}	45	62.5	45	62.5	°C/W		
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	29	38	29	38	0/11		

Notes:

a. Based on T_C = 25 °C. b. Surface Mounted on 1" x 1" FR4 board.

c. t = 10 s. d. Maximum under Steady State conditions is 120 °C/W.

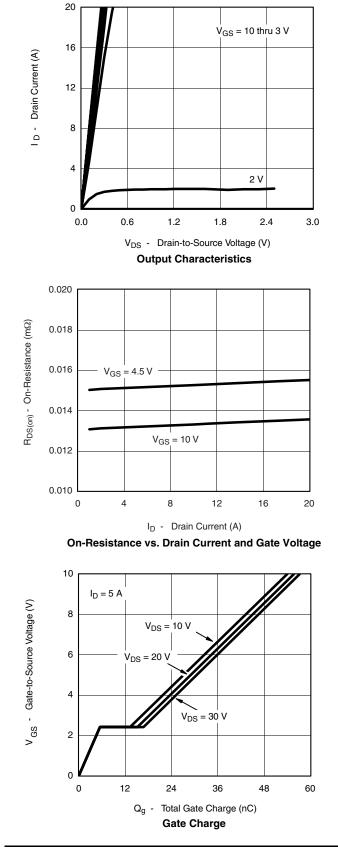
Si4563DY Vishay Siliconix

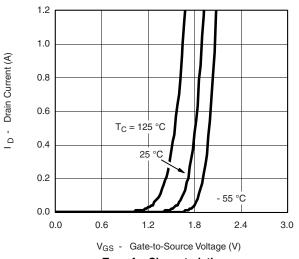
Parameter	Cumh al	Toot Conditions	ant Conditions			a Mox	Unit
Static	Symbol	Test Conditions	Min.	Typ. ^a	Max.	Unit	
State		V _{GS} = 0 V, I _D = 250 μA	N-Ch	40			
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 V, I_D = -250 \mu A$	P-Ch	- 40			V
		$I_{\rm D} = 250 \mu{\rm A}$	N-Ch		40		
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = - 250 μA	P-Ch		- 40		_
		I _D = 250 μA	N-Ch		- 4.8		mV/°
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	II _D = - 250 μA	P-Ch		4.0		-
		$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	N-Ch	0.8		2.0	v
Gate Threshold Voltage	V _{GS(th)}	V _{DS} = V _{GS} , I _D = - 250 μA	P-Ch	- 0.8		- 2.2	
Cata Bady Laakaga	1	$V_{DS} = 0 V, V_{GS} = \pm 16 V$	N-Ch			100	۳Å
Gate-Body Leakage	I _{GSS}		P-Ch			- 100	nA
		$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}$	N-Ch			1	
Zero Gate Voltage Drain Current		$V_{DS} = -40 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	P-Ch			- 1	μA
Zero Gale Vollage Drain Current	IDSS	V_{DS} = 40 V, V_{GS} = 0 V, T_{J} = 55 °C	N-Ch			10	
		V_{DS} = - 40 V, V_{GS} = 0 V, T_{J} = 55 °C	P-Ch			- 10	
On-State Drain Current ^b	I _{D(on)}	V _{DS} = 5 V, V _{GS} = 10 V	N-Ch	20			A
		$V_{DS} = -5 V, V_{GS} = -10 V$	P-Ch	- 20			
	R _{DS(on)}	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 5 \text{ A}$	N-Ch		0.013	0.016	Ω
		V _{GS} = - 10 V, I _D = - 5 A	P-Ch		0.020	0.025	
Drain-Source On-State Resistance ^b		$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 4 \text{ A}$	N-Ch		0.015	0.019	
		$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -4 \text{ A}$	P-Ch		0.025	0.032	
b	9 _{fs}	V _{DS} = 15 V, I _D = 5 A	N-Ch		23		s
Forward Transconductance ^b		V _{DS} = - 15 V, I _D = - 5 A	P-Ch		18		
Dynamic ^a							
Input Capacitance	C _{iss}		N-Ch		2390		
	C _{oss} C _{rss}	N-Channel • V _{DS} = 20 V, V _{GS} = 0 V, f = 1 MHz •	P-Ch		2120		- pF
Output Capacitance			N-Ch		270		
		P-Channel	P-Ch		310		
Reverse Transfer Capacitance		$V_{DS} = -20 V$, $V_{GS} = 0 V$, f = 1 MHz	N-Ch		165		
			P-Ch		235	05	
	Qg	$V_{DS} = 20 \text{ V}, \text{ V}_{GS} = 10 \text{ V}, \text{ I}_{D} = 5 \text{ A}$	N-Ch		56	85	nC
Total Gate Charge		$V_{DS} = -20 \text{ V}, V_{GS} = -10 \text{ V}, I_{D} = -5 \text{ A}$	P-Ch		52	80	
		N-Channel	N-Ch		26	40	
Gate-Source Charge	Q _{gs}	$V_{DS} = 20 \text{ V}, V_{GS} = 4.5 \text{ V} \text{ I}_{D} = 5 \text{ A}$	P-Ch N-Ch		25.5	39	
					5.5		
-	Q _{gd}	P-Channel	P-Ch N-Ch		5.1 9.7		-
Gate-Drain Charge		$V_{DS} = -20 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -5 \text{ A}$	P-Ch		9.7		-
			N-Ch		2.6	4.0	
Gate Resistance	R _g	f = 1 MHz	P-Ch		5.8	9.0	Ω

Vishay Siliconix

	Symbol	ool Test Conditions			Typ. ^a	Max.	Unit
Dynamic ^a		·					
Turn-On Delay Time	t _{d(on)}	N-Channel	N-Ch		15	23	
	-()	$V_{DD} = 20 \text{ V}, \text{ R}_{L} = 4 \Omega$	P-Ch		13	20	-
Rise Time	t _r	$I_D \cong 5 \text{ A}, V_{\text{GEN}} = 10 \text{ V}, \text{R}_g = 1 \Omega$	N-Ch P-Ch		20 16	30 25	
		-	N-Ch		56	85	
Turn-Off Delay Time	t _{d(off)}	P-Channel $V_{DD} = -20 \text{ V}, \text{ R}_{\text{I}} = 4 \Omega$	P-Ch		75	115	
		$V_{DD} = -20 \text{ V}, \text{ H}_{L} = 4 \Omega$ $I_{D} \cong -5 \text{ A}, \text{ V}_{\text{GEN}} = -10 \text{ V}, \text{ H}_{\text{g}} = 1 \Omega$	N-Ch		10	15	
Fall Time	t _f	$D = -3 \Lambda, V_{GEN} = -10 V, H_g = 1.22$	P-Ch		68	105	
			N-Ch		88	135	ns
Turn-On Delay Time	t _{d(on)}	N-Channel	P-Ch		33	50	
		$V_{DD} = 20 \text{ V}, \text{ R}_{L} = 4 \Omega$	N-Ch		117	180	-
Rise Time	t _r	$I_D \cong 5 \text{ A}, V_{\text{GEN}} = 4.5 \text{V}, \text{R}_\text{g} = 1 \Omega$	P-Ch		93	140	
Turn-Off Delay Time Fall Time	t _{d(off)} t _f	P-Channel V_{DD} = - 20 V, R_L = 4 Ω I_D \cong - 5 A, V_{GEN} = - 4.5 V, R_g = 16 Ω	N-Ch		62	95	
			P-Ch		80	120	
			N-Ch		19	30	
			P-Ch		69	105	
Drain-Source Body Diode Characterist	ics	1	-				
Continuous Source-Drain Diode Current	۱ _S	T _C = 25 °C	N-Ch			2.7	
			P-Ch			- 2.7	A
Pulse Diode Forward Current ^a	I _{SM}		N-Ch			20	
	-		P-Ch			- 20	
Body Diode Voltage	V _{SD}	I _S = 1.5 A	N-Ch		0.69	1.2	v
		I _S = - 1.6 A	P-Ch		- 0.72	- 1.2	
Body Diode Reverse Recovery Time	t _{rr}		N-Ch		62	95	ns
		N-Channel	P-Ch		49	75	
Body Diode Reverse Recovery Charge		$I_F = 2 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 \text{ °C}$	N-Ch		62	95	nC
		· · ·	P-Ch		42	65	
Reverse Recovery Fall Time	t _a	P-Channel	N-Ch		26		4
		$I_F = -2 A$, dl/dt = -100 A/µs, $T_J = 25 °C$	P-Ch N-Ch		19 36		ns
	Rise Time t _b	1			.10		

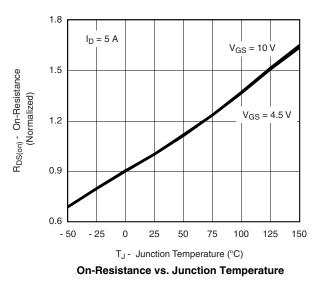
Notes:


a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

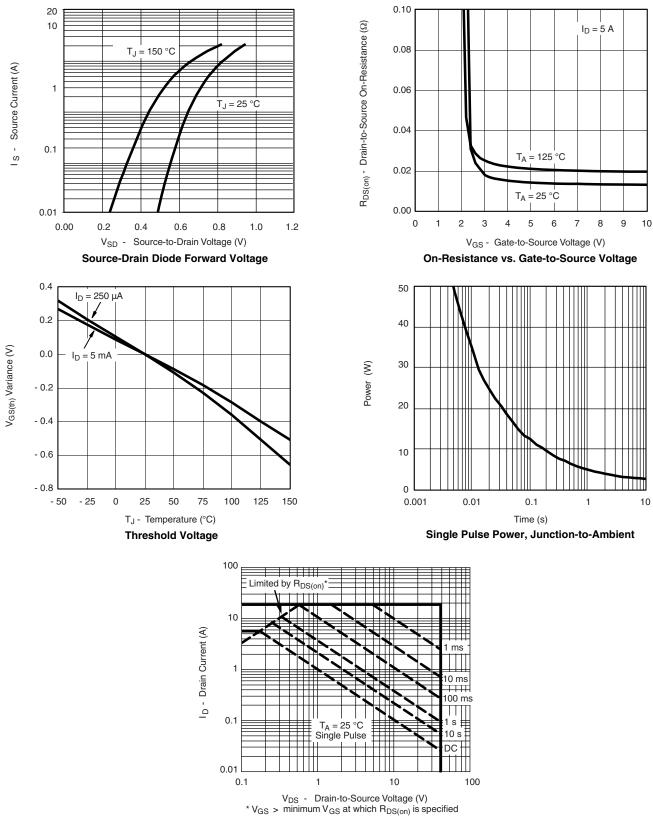

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Vishay Siliconix

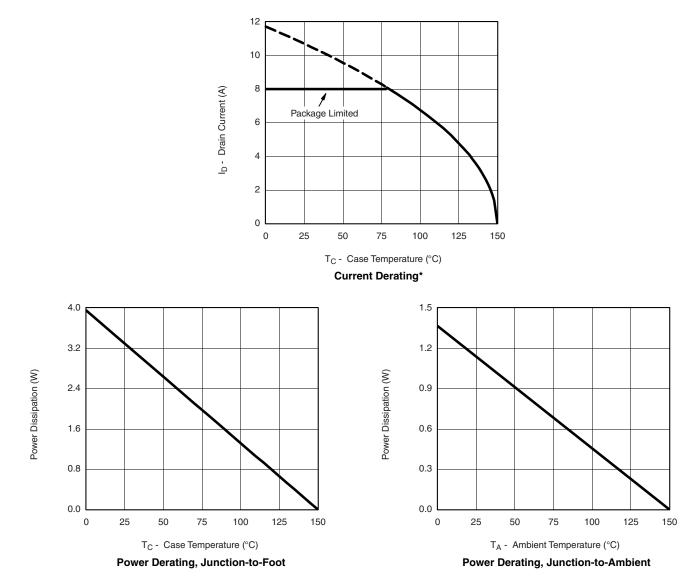
N-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



Transfer Characteristics


Capacitance

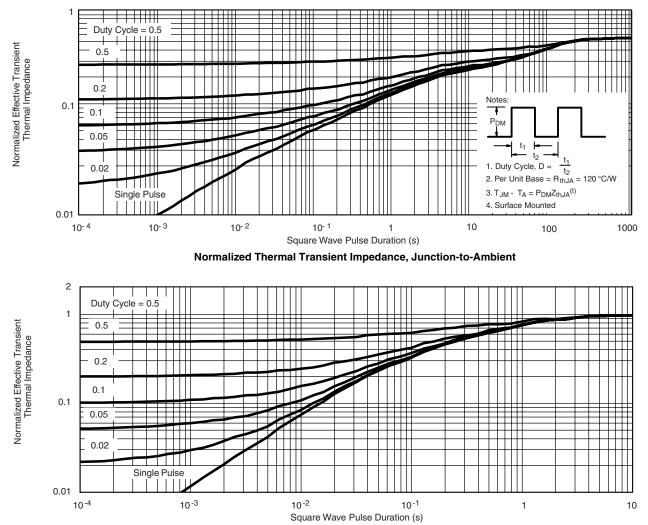
www.vishay.com 4


N-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Safe Operating Area, Junction-to-Ambient

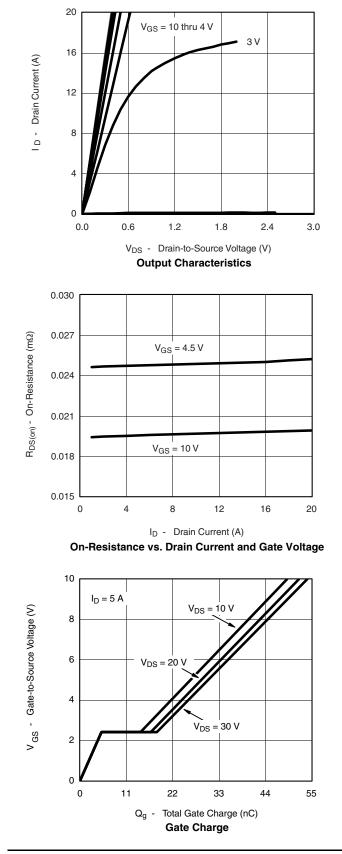
Vishay Siliconix

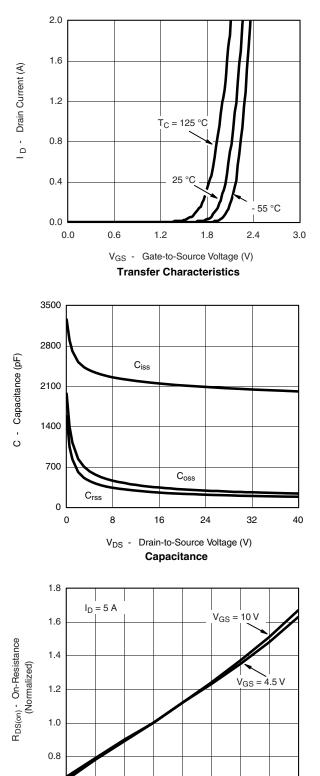
N-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

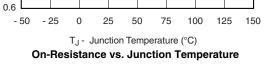


* The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

Vishay Siliconix

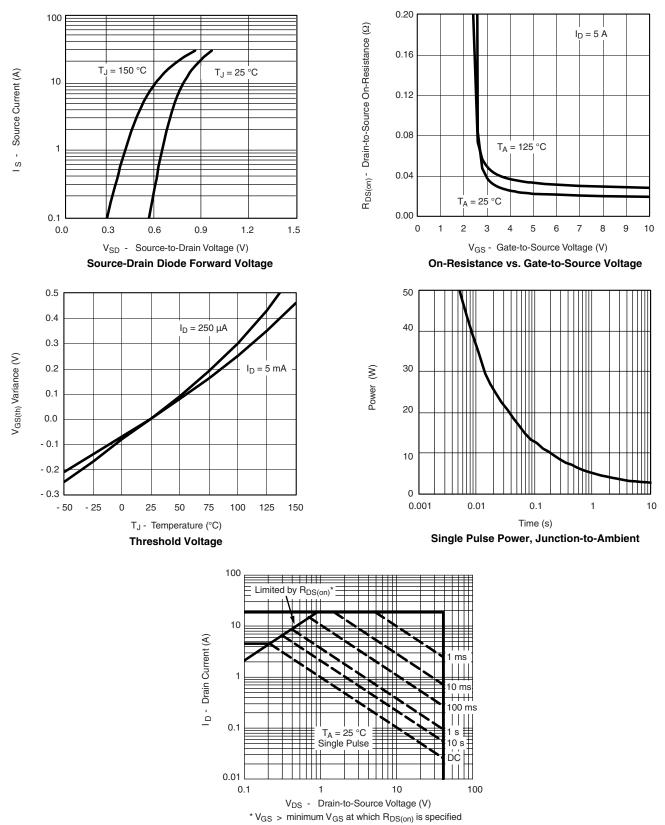

N-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

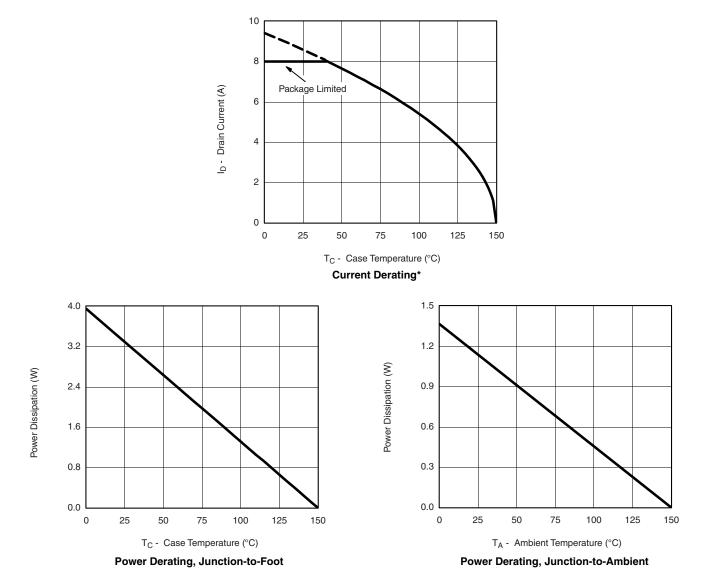

Normalized Thermal Transient Impedance, Junction-to-Case



Vishay Siliconix

P-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

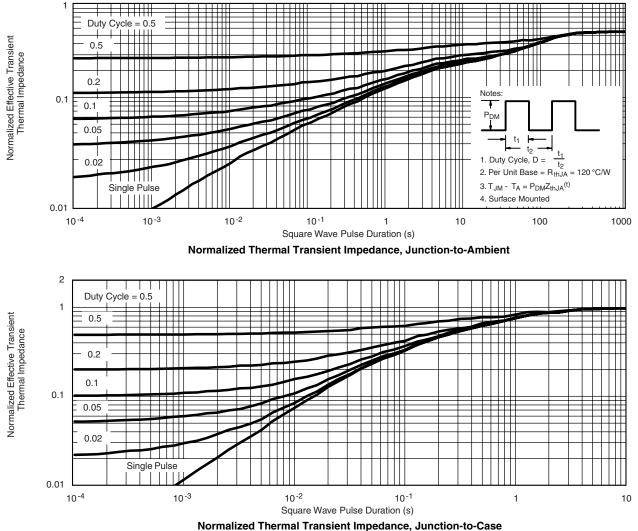



P-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Safe Operating Area, Junction-to-Ambient

Vishay Siliconix

P-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted


* The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

Si4563DY Vishay Siliconix

Normalized merinal transient impedance, junction-to-case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?73513.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.