mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AUTOMOTIVE AM/FM RADIO RECEIVER

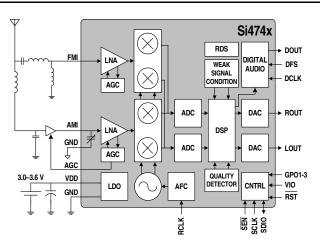
Features

- Worldwide FM band support (64–108 MHz)
- Worldwide AM band support (520–1710 kHz)
- LW band support (153–288 kHz) (Si4742/43/44/45 only)
- MW (520–1710 kHz) and SW (2.3–30 MHz) support (Si4742/43/44/45 only)
- NOAA weather band support (162.4–162.55 MHz) (Si4742/43 only)
- FM multipath detection and mitigation
- AM/FM noise blanker (Si4742/43/44/45 only)
- Received signal quality indicators (RSSI, SNR, frequency offset, multi-path interference)
- AM and FM programmable seek tuning
- AM and FM programmable soft mute control
- FM Hi-cut control (Si4742/43/44/45 only)
- Power line noise rejection/AM lo-cut filter
- FM programmable stereo-mono blend

Applications

OEM car audio systems

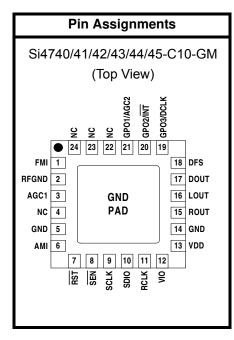
- AM and FM programmable channel bandwidth filters
- Digital FM stereo decoder
- Advanced patented RDS/RBDS processor (Si4741/43/45 only)
- Automatic gain control (AGC)
- Integrated AM and FM low-noise amplifier (LNA)
- Image-rejection mixer
- Frequency synthesizer with integrated voltage controlled oscillator (VCO)
- Low-IF conversion with no external ceramic filters
- 3.0 to 3.6 V supply voltage
- Programmable reference clock
- AECQ-100 qualified
 -40 to 85 °C operation


After-market car audio systems

- Digital audio output (I²S) (Si4741/43/45 only)
 - 24-pin 4 x 4 mm QFN packagePb-free/RoHS compliant

Description

The Si474x AM/FM receiver family is the most highly integrated automotive grade and performance solution available.


Functional Block Diagram

Patents pending

Note: To ensure proper operation and receiver performance, follow the guidelines in "AN400: Si474x AM/FM Receiver Layout Guide." Silicon Laboratories will evaluate schematics and layouts for gualified customers.

TABLE OF CONTENTS

Section

<u>Page</u>

1. Electrical Specifications 4 2. Typical Application Schematic 1 3. Bill of Materials 1	7 8
4. Description	0
4.1. Introduction	0
4.2. Block Diagram and Functional Description	1
4.3. FM Receiver Front-end	2
4.4. AM Receiver Front-end	2
4.5. Received Signal Qualifiers	
4.6. Digital Audio Interface (Si4741/43/45 only)	2
4.7. Stereo Audio Processing	
4.8. De-emphasis	
4.9. Stereo DACs	6
4.10. Soft Mute	6
4.11. Seek and Valid Station Qualification	7
4.12. FM Hi-Cut Control (Si4742/43/44/45 only)	7
4.13. AM/FM Noise Blanker (Si4742/43/44/45 only)	9
4.14. Programming Section	
4.15. Reset, Powerup, and Powerdown	3
4.16. GPO 1–3	3
4.17. RDS/RBDS Advanced Processor	3
4.18. Reference Clock	5
4.19. Control Interface	5
5. Commands and Properties	7
6. Pin Descriptions: Si4740/41/42/43/44/45-C10-GM	
7. Ordering Guide	
8. Package Markings	1
8.1. Ši4740/41/42/43/44/45-C10 Top Mark	
8.2. Top Mark Explanation4	
9. Package Outline: Si4740/41/42/43/44/45-C10 QFN	2
10. PCB Land Pattern: Si4740/41/42/43/44/45-C10 QFN	
11. Additional Reference Resources	4
Document Change List	
Contact Information	

1. Electrical Specifications

Table 1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply Voltage	V _{DD}		3.0	—	3.6	V
Interface Supply Voltage	V _{IO}		2.7	—	3.6	V
Power Supply Powerup Rise Time	V _{DDRISE}		10	—	—	μs
Interface Power Supply Powerup Rise Time	V _{IORISE}		10	—	—	μs
Ambient Temperature	T _A		-40	25	85	°C
Note: All minimum and maximum spec Typical values apply at V _{DD} = 3.3 otherwise stated.						

Table 2. Absolute Maximum Ratings^{1,2}

Parameter	Symbol	Value	Unit
Supply Voltage	V _{DD}	-0.5 to 5.8	V
Interface Supply Voltage	V _{IO}	-0.5 to 3.9	V
Input Current ³	I _{IN}	10	mA
Input Voltage ³	V _{IN}	–0.3 to (V _{IO} + 0.3)	V
Operating Temperature	T _{OP}	-45 to 95	°C
Storage Temperature	T _{STG}	-55 to 150	°C
RF Input Level ⁴		0.4	V _{pK}

Notes:

1. Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure beyond recommended operating conditions for extended periods may affect device reliability.

The Si4740/41/42/43/44/45-C10 devices are high-performance RF integrated circuits with certain pins having an ESD rating of < 2 kV HBM. Handling and assembly of these devices should only be done at ESD-protected workstations.

3. For input pins SCLK, SEN, SDIO, RST, RCLK, DCLK, DFS, GPO1, GPO2, and GPO3.

4. At RF input pins, FMI and AMI.

Table 3. DC Characteristics

(V_{DD} = 3.0 to 3.6 V, V_{IO} = 2.7 to 3.6 V, T_A = –40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
FM Mode	-					
Supply Current	I _{FM}		—	26	28.6	mA
WB Mode (Si4742/43 only)	·					
Supply Current	I _{FM}		—	20	23	mA
AM Mode						
Supply Current	I _{AM}		—	19	23	mA
Supplies and Interface						
Interface Supply Current	I _{IO}		_	300	400	μA
Powerdown Current ^{1,2}	I _{PD}		_	6	12	μA
Interface Powerdown Current ¹	I _{IO}	SCLK, DFS, DCLK, RCLK inactive	—	6	12	μA
High Level Input Voltage ³	V _{IH}		0.7 x V _{IO}		_	V
Low Level Input Voltage ³	V _{IL}		_		0.3 x V _{IO}	V
High Level Input Current ³	I _{IH}	V _{IN} = V _{IO} = 3.6 V	-10		10	μA
Low Level Input Current ³	IIL	V _{IN} = 0 V, V _{IO} = 3.6 V	-10	_	10	μA
High Level Output Voltage ⁴	V _{OH}	Ι _{ΟUT} = 500 μΑ	0.8 x V _{IO}	_	_	V
Low Level Output Voltage ⁴	V _{OL}	I _{OUT} = –500 μA	—	_	0.2 x V _{IO}	V

Notes:

1. Specifications are guaranteed by characterization.

2. Refer to Section "4.19. Control Interface" on page 35.

3. For input pins SCLK, SEN, SDIO, RST, and RCLK.

4. For output pins SDIO, DFS, GPO1, GPO2, and GPO3.

Table 4. Reset Timing Characteristics^{1,2,3}

 $(V_{DD} = 3.0 \text{ to } 3.6 \text{ V}, V_{IO} = 2.7 \text{ to } 3.6 \text{ V}, T_A = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Min	Тур	Max	Unit
\overline{RST} Pulse Width and GPO1, GPO2/ \overline{INT} Setup to $\overline{RST}^{\uparrow 4}$	t _{SRST}	100		—	μs
GPO1, GPO2/INT Hold from RST↑	t _{HRST}	30	_	_	ns

Important Notes:

- 1. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is high) does not occur within 300 ns before the rising edge of RST.
- 2. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high until after the first start condition.
- 3. When selecting 3-wire or SPI modes, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the rising edge of RST.
- 4. If GPO1 and GPO2 are actively driven by the user, then minimum t_{SRST} is only 30 ns. If GPO1 or GPO2 is hi-Z, then minimum t_{SRST} is 100 µs, to provide time for on-chip 1 M Ω devices (active while \overline{RST} is low) to pull GPO1 high and GPO2 low.

Figure 1. Reset Timing Parameters for Busmode Select Method

Table 5. 2-Wire Control Interface Characteristics^{1,2,3}

(V_{DD} = 3.0 to 3.6 V, V_{IO} = 2.7 to 3.6 V, T_A = -40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCLK Frequency	f _{SCL}		0		400	kHz
SCLK Low Time	t _{LOW}		1.3		—	μs
SCLK High Time	t _{HIGH}		0.6		—	μs
SCLK Input to SDIO ↓ Setup (START)	t _{SU:STA}		0.6	_	_	μs
SCLK Input to SDIO \downarrow Hold (START)	t _{HD:STA}		0.6	—	—	μs
SDIO Input to SCLK \uparrow Setup	t _{SU:DAT}		100	—	—	ns
SDIO Input to SCLK \downarrow Hold ^{4,5}	t _{HD:DAT}		0	_	900	ns
SCLK input to SDIO ↑ Setup (STOP)	t _{SU:STO}		0.6	_		μs
STOP to START Time	t _{BUF}		1.3	_	—	μs
SDIO Output Fall Time	t _{f:OUT}		20 + 0.1 $\frac{C_b}{1 p F}$		250	ns
SDIO Input, SCLK Rise/Fall Time	t _{f:IN} t _{r:IN}		20 + 0.1 $\frac{C_b}{1 p F}$		300	ns
SCLK, SDIO Capacitive Loading	Cb		—		50	pF
Input Filter Pulse Suppression	t _{SP}		—	—	50	ns

Notes:

1. When V_{IO} = 0 V, SCLK and SDIO are low impedance.

2. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is high) does not occur within 300 ns before the rising edge of RST.

3. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high until after the first start condition.

The Si474x delays SDIO by a minimum of 300 ns from the V_{IH} threshold of SCLK to comply with the minimum t_{HD:DAT} specification.

5. The maximum t_{HD:DAT} has only to be met when f_{SCL} = 400 kHz. At frequencies below 400 kHz, t_{HD:DAT} may be violated as long as all other timing parameters are met.

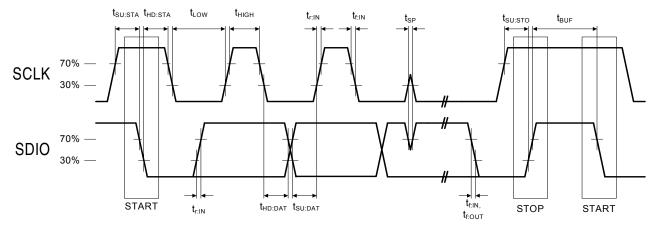


Figure 2. 2-Wire Control Interface Read and Write Timing Parameters

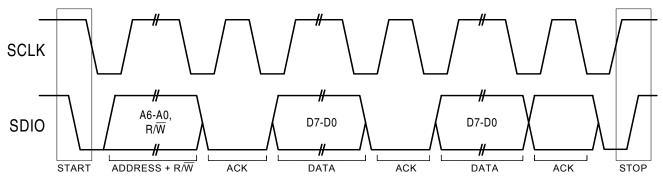


Figure 3. 2-Wire Control Interface Read and Write Timing Diagram

Table 6. 3-Wire Control Interface Characteristics

(V_{DD} = 3.0 to 3.6 V, V_{IO} = 2.7 to 3.6 V, T_A = -40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCLK Frequency	f _{CLK}		0	—	2.5	MHz
SCLK High Time	t _{HIGH}		25	—	—	ns
SCLK Low Time	t _{LOW}		25	—	—	ns
SDIO Input, SEN to SCLK↑ Setup	t _S		20	—	—	ns
SDIO Input to SCLK [↑] Hold	t _{HSDIO}		10	—	—	ns
SEN Input to SCLK↓ Hold	t _{HSEN}		10	—	—	ns
SCLK↑ to SDIO Output Valid	t _{CDV}	Read	2	—	25	ns
SCLK [↑] to SDIO Output High Z	t _{CDZ}	Read	2	—	25	ns
SCLK, SEN, SDIO, Rise/Fall Time	t _R , t _F			_	10	ns

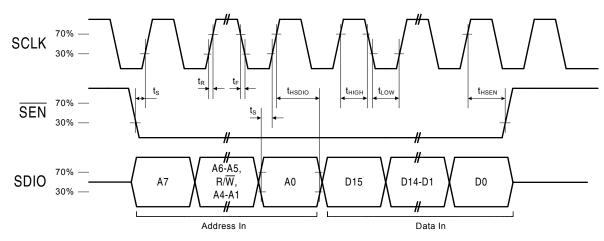


Figure 4. 3-Wire Control Interface Write Timing Parameters

Table 7. SPI Control Interface Characteristics

(V_{DD} = 3.0 to 3.6 V, V_{IO} = 2.7 to 3.6 V, T_A = –40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCLK Frequency	f _{CLK}		0	—	2.5	MHz
SCLK High Time	t _{HIGH}		25	_		ns
SCLK Low Time	t _{LOW}		25	—	_	ns
SDIO Input, SEN to SCLK↑ Setup	t _S		15	_	_	ns
SDIO Input to SCLK↑ Hold	t _{HSDIO}		10	_		ns
SEN Input to SCLK↓ Hold	t _{HSEN}		5	—	_	ns
SCLK↓ to SDIO Output Valid	t _{CDV}	Read	2	_	25	ns
SCLK↓ to SDIO Output High Z	t _{CDZ}	Read	2	_	25	ns
SCLK, SEN, SDIO, Rise/Fall Time	t _R , t _F		—	—	10	ns
Note: When selecting SPI mode, the us rising edge of RST.	ser must ensur	e that a rising edge of SC	LK does no	t occur with	in 300 ns b	efore the

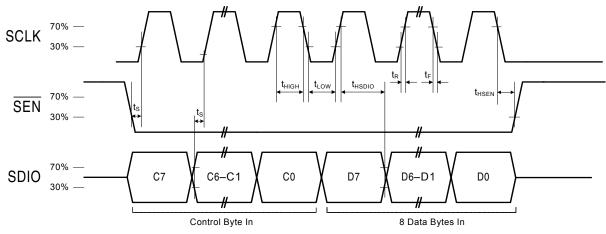


Figure 6. SPI Control Interface Write Timing Parameters

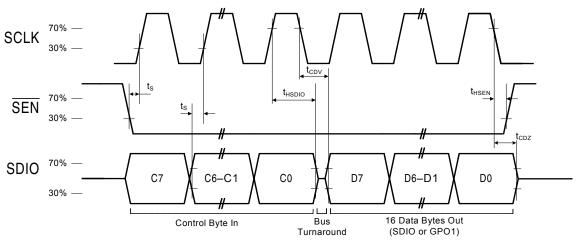


Figure 7. SPI Control Interface Read Timing Parameters

Table 8. Digital Audio Interface Characteristics

 $(V_{DD} = 3.0 \text{ to } 3.6 \text{ V}, V_{IO} = 2.7 \text{ to } 3.6 \text{ V}, T_A = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
DCLK Cycle Time	t _{DCT}		26	_	1000	ns
DCLK Pulse Width High	t _{DCH}		10	_	_	ns
DCLK Pulse Width Low	t _{DCL}		10	_	_	ns
DFS Set-up Time to DCLK Rising Edge	t _{SU:DFS}		5	_	_	ns
DFS Hold Time from DCLK Rising Edge	t _{HD:DFS}		5	_	_	ns
DOUT Propagation Delay from DCLK Falling Edge	t _{PD:DOUT}		0	-	12	ns

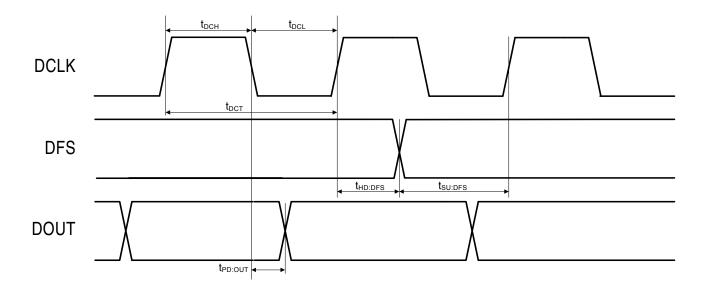


Figure 8. Digital Audio Interface Timing Parameters, I²S Mode

Table 9. FM Receiver Characteristics^{1,2}

(V_{DD} = 3.0 to 3.6 V, V_{IO} = 2.7 to 3.6 V, T_A = 25 °C)

Parameter	Test Condition	Min	Тур	Max	Unit
FM Receiver			•	L	
Specifications Referred to Si4740/	41/42/43/44/45-C10 Application	n Circuit lı	nput		
Input Frequency		64		108	MHz
FM Frequency Steps		10	—	200	kHz
Sensitivity ^{3,4,5,6,7}	(S+N)/N = 26 dB	_	2	3	μV EMF
RDS Sensitivity ⁸	Δf = 2 kHz, RDS BLER < 5%	_	6	9	μV EMF
RDS Synchronization Persistence ⁸	Δf = 2 kHz RDSSYNC = 1 ≥ 10 sec	_	3.8/60	_	µV EMF/ RDS BLER%
RDS Synchronization Stability ⁸	Δf = 2 kHz RDSSYNC = 1 ≥ 10 sec		5.9/10	_	µV EMF/ RDS BLER%
RDS Synchronization Time ⁸	∆f = 2 kHz RF input = 60 dBµV EMF	_	90	—	ms
RDS PI Lock Time ⁸	∆f = 2 kHz RF input = 60 dBµV EMF	_	105	_	ms
LNA Input Resistance ^{6,8,9}		3	4		kΩ
LNA Input Capacitance ^{6,8,9}		4	5	6	pF
Input IP3 ^{3,4,7}	400 and 800 kHz blockers	100	105		dBµV EMF
AM Suppression ^{3,4,6,8,9}	m = 0.3	40	55	—	dB
Image Rejection ⁸	∆f = 22.5 kHz	37	55		dB
Adjacent Channel Selectivity	±200 kHz	38	50		dB
Alternate Channel Selectivity	±400 kHz	60	70		dB
Strong Signal Distortion ^{3,4,5,6,8}	RF Level 120 dBµV EMF	53	58		dB SINAD
Audio Output Voltage ^{3,4,6,9}		72	80	90	mVRMS
Audio Output L/R Imbalance ^{3,6,9,10}		–1	<u> </u>	1	dB

Notes:

 Additional testing information is available in application note, "AN388:Si470X/1X/2X/3X/4X Evaluation Board Test Procedure." Volume = maximum for all tests. Tested at F_{RF} = 98 MHz.

2. To ensure proper operation and receiver performance, follow the guidelines in "AN400: Si474x AM/FM Receiver Layout Guide." Silicon Laboratories will evaluate schematics and layouts for qualified customers.

3. F_{MOD} = 1 kHz, 75 µs de-emphasis, MONO = enabled unless noted otherwise.

4. ∆f = 22.5 kHz.

- **5.** B_{AF} = 300 Hz to 15 kHz.
- 6. $f_{RF} = 76$ to 108 MHz.
- 7. AGC is disabled.

8. Guaranteed by characterization.

9. Measured at $V_{EMF} = 60 \text{ dB}\mu V_{EMF}$.

10. ∆f = 75 kHz.

- **11.** L = 1, R = 0.
- **12.** At LOUT and ROUT pins.

Table 9. FM Receiver Characteristics^{1,2} (Continued)

 $(V_{DD} = 3.0 \text{ to } 3.6 \text{ V}, V_{IO} = 2.7 \text{ to } 3.6 \text{ V}, T_A = 25 \text{ °C})$

Parameter	Test Condition	Min	Тур	Max	Unit
Audio Frequency Response Low ⁸	–3 dB	_	_	30	Hz
Audio Frequency Response High ⁸	–3 dB	15	—	_	kHz
Audio Stereo Separation ^{3,6,9,10,11}		35	45	_	dB
Audio SNR ^{3,4,5,6,9}		56	63	_	dB
Audio THD ^{3,4,5,6,9}		_	0.1	0.5	%
De-emphasis Time Constant ⁸	FM_DEEMPHASIS = 2	70	75	80	μs
	FM_DEEMPHASIS = 1	45	50	54	μs
Audio Common Mode Voltage ¹²		0.7	0.8	0.9	V
Audio Common Mode Voltage ⁸	High-Z mode	_	0.5 x V _{IO}	_	V
Audio Output Load Resis- tance ^{8,10,12}	Single-ended	10	—	_	kΩ
Audio Output Load Capaci- tance ^{8,10,12}	Single-ended	_	—	50	pF
Seek/Tune Time ^{8,12}	RCLK tolerance = 100 ppm	_	40	60	ms/ channel
Powerup Time ⁸	From powerdown	—	—	110	ms
FM RSSI Offset	Input levels of 8 and 60 dBµV EMF	-3	-	3	dB

Notes:

 Additional testing information is available in application note, "AN388:Si470X/1X/2X/3X/4X Evaluation Board Test Procedure." Volume = maximum for all tests. Tested at F_{RF} = 98 MHz.

2. To ensure proper operation and receiver performance, follow the guidelines in "AN400: Si474x AM/FM Receiver Layout Guide." Silicon Laboratories will evaluate schematics and layouts for qualified customers.

3. F_{MOD} = 1 kHz, 75 µs de-emphasis, MONO = enabled unless noted otherwise.

4. ∆f = 22.5 kHz.

- **5.** B_{AF} = 300 Hz to 15 kHz.
- **6.** f_{RF} = 76 to 108 MHz.
- 7. AGC is disabled.
- **8.** Guaranteed by characterization.
- **9.** Measured at V_{EMF} = 60 dBµV_{EMF}.
- **10.** ∆f = 75 kHz.
- **11.** L = 1, R = 0.
- 12. At LOUT and ROUT pins.

Table 10. WB Receiver Characteristics¹ (Si4742/43 only)

 $(V_{DD} = 3.0 \text{ to } 3.6 \text{ V}, V_{IO} = 2.7 \text{ to } 3.6 \text{ V}, T_A = 25 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input Frequency	F _{RF}		162.4	_	162.55	MHz
Sensitivity ^{2,3,4,5}		SINAD = 12 dB	_	0.65	—	$\mu V EMF$
Adjacent Channel Selectivity		±25 kHz	40	55	—	dB
Audio S/N ^{2,3,4,5,6}		Mono	35	45	_	dB
Audio Frequency Response Low ⁷		–3 dB	—	_	300	Hz
Audio Frequency Response High ⁷		–3 dB	15	—	_	kHz

Notes:

1. To ensure proper operation and receiver performance, follow the guidelines in "AN400: Si474x AM/FM receiver Layout Guide." Silicon Laboratories will evaluate schematics and layouts for qualified customers.

2. F_{MOD} = 1 kHz.

3. ∆f = 3 kHz.

4. BAF = 300 Hz to 15 kHz, A-weighted.

5. F_{RF} = 162.5 MHz. 6. Measured at V_{EMF} = 60 dBµV EMF. 7. Guaranteed by characterization.

Table 11. AM Receiver Characteristics¹

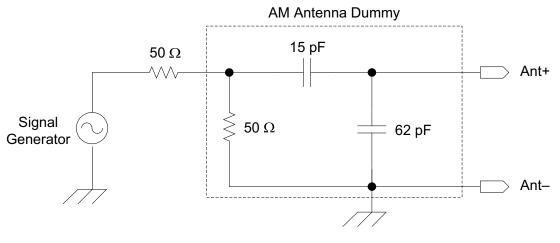
(V_{DD} = 3.0 to 3.6 V, V_{IO} = 2.7 to 3.6 V, T_A = 25 °C)

Parameter	Test Condition	Min	Тур	Max	Unit
AM Receiver		•		•	
Specifications referred to Si474 voltages at antenna dummy inp	40/41/42/43/44/45 application circ put.	uit with 15	pF/62pF ar	itenna dun	nmy,
Input Frequency	AM/MW	520		1710	kHz
	AM/LW	144	_	288	kHz
	AM/SW ²	2.3	_	30	MHz
Frequency Steps		1	_	10	kHz
Sensitivity 3,5	(S+N)/N=26 dB		25	34	dBuV
IP3 ⁶	40 and 80 kHz Offset	_	99		dBuV
Audio SNR ^{3,4,7,8}		50	53		dB
Audio THD ^{3,4,6,7,8}			0.1	0.5	%
Strong Signal THD 6,7,8	RF input level 120 dBµV EMF		0.2	1	%
Strong Signal SINAD 6,7,8	RF input level 120 dBµV EMF	53	55		dB
Power Supply Rejection Ratio ⁶	ΔV_{DD} = 100 mVRMS, 100 Hz		40		dB
Audio Output Voltage 3,4		54	60	67	mVRMS
Powerup Time ⁶	From powerdown	—	—	110	ms
Notes:	•		•		

Notes:

1. To ensure proper operation and receiver performance, follow the guidelines in "AN400: Si474x AM/FM receiver Layout Guide." Silicon Laboratories will evaluate schematics and layouts for qualified customers.

2. Contact Silicon Labs for additional details on shortwave operation and performance.


3. FMOD = 1 kHz, 30% modulation, 2 kHz channel filter.

4. Measured at V = 74 dB μ V.

5. fRF = 520 to 1710 kHz.

- 6. Guaranteed by characterization.
- **7.** BAF = 300 Hz to 15 kHz.
- 8. fRF = 520 kHz.

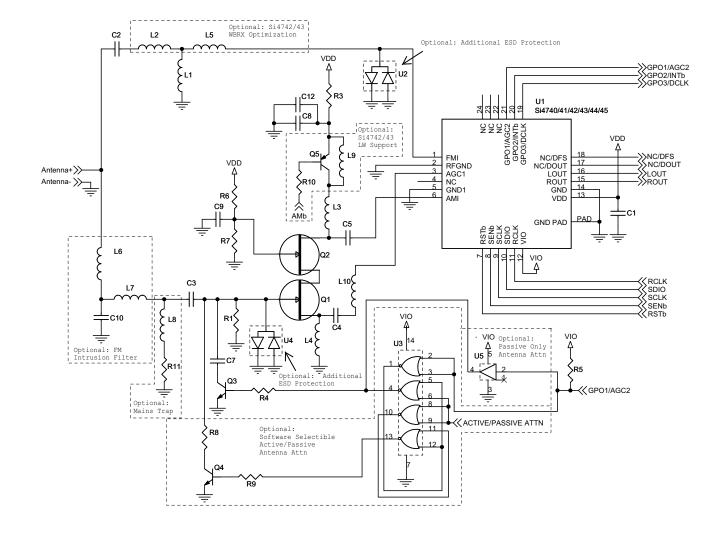

Figure 9. AM Test Circuit

Table 12. Reference Clock

(V_{DD} = 3.0 to 3.6 V, V_{IO} = 2.7 to 3.6 V, T_A = –40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
RCLK Supported Frequencies			31.130	32.768	40,000	kHz
RCLK Frequency Tolerance			-100	_	100	ppm

2. Typical Application Schematic

Notes:

- **1.** Place C1 close to V_{DD} pin.
- 2. All grounds connect directly to GND plane on PCB.
- **3.** To ensure proper operation and receiver performance, follow the guidelines in "AN400: Si474x AM/FM Receiver Layout Guide." Silicon Laboratories will evaluate schematics and layouts for qualified customers.

3. Bill of Materials

Reference	Description	Manufacturer	Part Number
C1	CAP,22 nF, ±5%, 0402,X7R	Venkel	C0402X7R250-223JNE
C2	CAP,18 pF, ±5%, 0402,COG	Venkel	C0402C0G500-180JNE
C3	CAP,270 pF, ±5%, 0402,COG	Venkel	C0402C0G500-271JNE
C4	CAP,18 nF, ±5%, 0402,X7R	Venkel	C0402X7R160-183JNE
C5,C8,C9	CAP,0.47 µF, ±5%, 0603,X7R	Venkel	C0603X7R160-474JNE
C7	CAP,1200 pF, ±5%, 0402,X7R	Venkel	C0402X7R500-122JNE
C12	CAP, 100 µF, ±20%, 1206, X5R	Venkel	C1206X5R063-107MNE
L1	IND, 120 nH, ±5%, 0603	Pulse	PE-0603CD121JTT
L3	IND,220 µH, ±10%, 1008	Coilcraft	1008PS-224KL
L4	IND,1 mH, ±20%, LPS4018	Coilcraft	LPS4018-105ML
L10	IND,33 µH, ±10%, 0805	Coilcraft	0805PS-333KL
Q1,Q2	FET,SM,SOT-23	NXP	BF862
Q3	NPN,SM,SOT-23	Fairchild Semi	MMBTH10
R1	RES,10 MΩ, ±5%, 0603	Venkel	CR0603-16W-106JT
R3	RES,10 Ω, ±1%, 0402	Venkel	CR0402-16W-10R0FT
R4,R6,R7	RES,249 Ω, ±1%, 0402	Venkel	CR0402-16W-2490FT
R5	RES,4.7 kΩ, ±5%, 0402	Venkel	CR0402-16W-472JT
U1	QFN-24, SM	Silicon Laboratories	Si4740/41/42/43/44/45-C10
Optional: Add	ditional ESD Protection		
U2,U4	ESD DIODE ARRAY, SM	California Micro Device	CM1213
Optional: Wit	hout WBRX Optimization		
L2	IND, 33 nH, ±5%, 0603	Pulse	PE-0603CD330JTT
L5	RES, 0 Ω, 0603	Venkel	CR0603-16W-000T
Optional: Si4	742/43 WBRX Optimization		
L2	IND, 100 nH, ±5%, 0603	Pulse	PE-0603CD101JTT
L5	IND, 150 nH, ±5%, 0603	Pulse	PE-0603CD151JTT
Optional: Pas	ssive Only Antenna Attenuation		•
U5	BUFFER, SOT-23	TI	SN74LVC1G17DBV
Optional: FM	Intrusion on AM		1
C10	CAP,3.9 pF, ±0.25 pF, 0402,COG	Venkel	C0402C0G500-3R9CNE
L6,L7	IND, 6.8 µH, ±10%, 0805	Coilcraft	0805PS-682KL
Note: Specific	part numbers are provided as a reference	to the Si4743-C EVB. Other sup	bliers may be substituted.

Table 13. Si4740/41/42/43/44/45-C10 Bill of Materials

Reference	Description	Manufacturer	Part Number	
Optional: Main	s Trap on AM			
L8	IND,47 mH, ±6%, L7PD	Toko	#388BN-1211Z	
R11	RES,10 kΩ,±5%,0402	Venkel	CR0402-16W-103JT	
Optional: Softv	vare Selectable Active/Passive Ant	enna Attenuation		
R8	RES,1 Ω, ±1%, 0402	Venkel	CR0402-16W-1R00FT	
R9	RES,249 Ω, ±1%, 0402	Venkel	CR0402-16W-2490FT	
Q4	NPN,SM,SOT-23	Fairchild Semi	MMBTH10	
U3	QUAD GATE, 14TSSOP	TI	SN74LVC02APW	
Optional: Si474	12/43/44/45 LW Support			
L9	IND, 2.7 mH, ±10%, 0807	Coilcraft	RFB0807-272L	
R10	RES,249 Ω, ±1%, 0402	Venkel	CR0402-16W-2490FT	
Q5	PNP, SM, SOT-23	Fairchild Semi	MMBTH81	
Note: Specific pa	art numbers are provided as a reference t	to the Si4743-C EVB. Other s	uppliers may be substituted.	

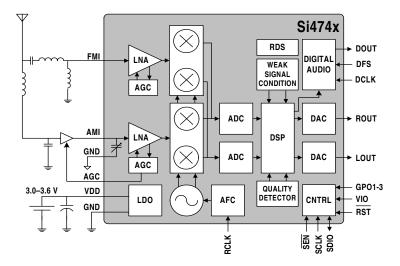
Table 13. Si4740/41/42/43/44/45-C10 Bill of Materials (Continued)

4. Description

4.1. Introduction

The Si474x AM/LW/SW/FM/WB receiver family offers 100% CMOS receiver integrated circuits (IC), providing the full receive functionality from antenna to audio for use in the automotive market. The family includes a portfolio of highly integrated receivers for primary AM/FM receivers that support worldwide broadcast audio bands and corresponding attributes including AM/FM and "college bands" down to 64 MHz, long wave, NOAA weather band, and dedicated companion RDS background receivers. The entire portfolio is layout compatible and is offered in a very small 4 x 4 x 0.85 mm 24-pin QFN package. Refer to "7. Ordering Guide" on page 39 for the corresponding part numbers.

The Si474x family implements Silicon Laboratories' proven and internationally patented digital low intermediate frequency (low-IF) receiver architecture. Silicon Labs has shipped over 100 million broadcast audio receivers worldwide using this architecture. The low-IF architecture delivers superior performance while integrating the great majority of external components required by competing solutions.


The Si474x products are feature-rich solutions, highly automated performance. providing both according to Silicon Laboratories' recommended settings, and extensive flexibility for customized audio and system performance. Programmable algorithms include advanced seek with multiple signal gualifiers and thresholds in all supported bands, FM stereo blend rates and thresholds, soft mute characteristics, multipath detection and mitigation, AM/FM noise blankers, and selectable FM Hi-cut filters. The part accepts programmable reference clock values. The IC provides audio output in standard line-level analog audio using high fidelity stereo DACs or digital audio format.

The Si4741, Si4743, Si4745, and all other family parts ending with an odd number, offer a fully-integrated preprocessor for the European Radio Data System (RDS) and the North American Radio Broadcast Data System (RBDS). The RDS preprocessor includes all symbol decoding, advanced error-correction, detailed visibility to block-error rates (BLER), synchronization status and times, and complete, decoded and errorcorrected RDS group presentation. The Si474x RDSenabled parts also offer several modes of operation for various applications which require more or less visibility to the RDS status and group data.

Table 14. 314740/41/42/43/44/43 Froduct 1 anning						
Feature	Si4740	Si4741	Si4742	Si4743	Si4744	Si4745
FM band coverage	✓	✓	✓	✓	✓	✓
FM RDS reception		✓		✓		✓
AM band coverage	✓	✓	✓	✓	✓	✓
LW band coverage			✓	✓	✓	✓
SW band coverage			✓	✓	✓	✓
WB (w/o SAME) band coverage			✓	✓		
FM multi-path detection and stereo/mono blend mitigation	√	✓	✓	~	✓	~
Advanced stereo-mono blend	✓	✓	✓	✓	✓	✓
Advanced soft mute	✓	✓	✓	✓	✓	✓
Hi-cut			✓	✓	~	✓
FM noise blanker			✓	✓	✓	✓
AM noise blanker			✓	✓	✓	✓
Digital audio I ² S		✓		✓		✓

Table 14. Si4740/41/42/43/44/45 Product Family

4.2. Block Diagram and Functional Description

Figure 10. Functional Block Diagram

The Si474x IC family integrates the voltage controlled oscillator (VCO) and frequency synthesizer and accepts a wide range of programmable reference clocks (RCLK). The frequency synthesizer generates the quadrature local oscillator signal used to downconvert the RF input to a low intermediate frequency. The VCO frequency is locked to the RCLK and adjusted with an automatic frequency control (AFC) servo loop during reception. The VCO frequency is modified according to the programmed target frequency.

The Si474x family uses a digital low-IF architecture that integrates the entire receive chain for AM MW, AM LW, AM SW, FM, and weather band, and eliminates the requirement for expensive external ceramic filters found in competing solutions. The IC also integrates the majority of external components and performs all processing in an on-chip digital signal processor (DSP) and 8051 microcontroller (MCU) core.

The analog chains for AM and FM include dedicated low-noise amplifiers (LNA), automatic gain control (AGC), image-reject quadrature mixers, programmable gain amplifiers (PGA), and a set of delta-sigma analogto-digital converters (ADCs).

The FM and AM LNA blocks receive wide-band frequency inputs at the FMI and AMI input pins respectively. For AM, an on-chip varactor and resistor array control the gain of the external AM antenna network. For FM, the external network is designed to provide a small boost to the FM band.

The LNA gain is dynamically controlled by the AGC loop, contingent on the RF peak detectors and signal strength. Each receive path continues to dedicated

quadrature mixers which downconvert the received signal from RF to low-IF, filter for out-of-band interferers, and perform a transfer function to shift the tuned frequency to dc. A pair of PGAs filters the mixer output from interferers and amplifies the signal again before delivering it to two high resolution ADCs. The ADCs generate high dynamic range signals and deliver them to the digital core for additional processing.

The digital core consists of a DSP, 8051 MCU core, memory access controller, control interface circuitry, and general programming interface functionality.

The MCU works in conjunction with the DSP to provide access to signal quality indicators and system behavior, as well as managing the IC control interface and communication with the host processor.

The Si474x digital core performs channel selection and filtering for all supported worldwide bands. The digital core calibrates tuning and performs AM/FM demodulation and FM stereo MPX audio processing. The digital core also performs signal quality processing including received signal strength indicators, impulse detection, SNR calculations, volume control, mute, and additional digital filtering. The Si4740 supports FM deemphasis of 50 or 75 μ s.

The stereo digital audio signal is then converted back to Left (L) and Right (R) analog with a pair of high resolution, digital-to-analog converters (DACs) and is available as line-level audio on the LOUT and ROUT pins. Additionally, the stereo digital audio is also provided via an 1^2 S interface (Si4741/43/45 only). The device supports 1^2 C-compatible 2-wire control interface and SPI 3-wire control interface.

4.3. FM Receiver Front-end

The Si474x family integrates the entire FM receive chain from antenna to audio out. The FM band is received on the FMI pin via an input coupling network with the recommended application circuit. This input coupling network isolates the FM band for best performance. The LNA supports US, Europe, Japan, OIRT, and Rest of World FM broadcast bands (64 to 108 MHz). The AGC circuit automatically controls the LNA gain to optimize sensitivity and rejection of strong interferers. For testing purposes, the AGC can be disabled. Refer to "AN388: Si470X/1X/2X/3X/4X Evaluation Board Test Procedure" for Si474x testing procedures.

4.4. AM Receiver Front-end

The Si474x family provides an integrated LNA, which works in conjunction with an external cascode amplifier to provide an AM receive chain from antenna to audio out. There are very few external components and no manual alignment required. The AM signal is received on the AMI pin via a cascode amplifier external circuit. The cascode circuit degeneration is automatically adjusted via the AGC pin as shown in Section "2. Typical Application Schematic" on page 17. The amount of degeneration depends on the signal strength. An additional GPO1 signal is used to attenuate the signal via a shunt for very strong signal handling when the signal exceeds the AGC pin degenerative control of the cascode amplifier stage.

4.5. Received Signal Qualifiers

A tuned signal's quality can vary with the environmental conditions, time of day, and position of the antenna among many other factors. To adequately manage the audio output and avoid unpleasant audible effects to the end-user, the Si474x monitors and provides indicators of the signal quality, allowing the host processor to perform additional processing if required by the customer. The Si474x monitors and reports a set of standard industry signal quality metrics including RSSI, SNR, and multi-path interference on FM signals.

As with other Si474x features, how these variables are used to improve audio performance can be left to the Silicon Labs on-chip algorithms (recommended), or they can be brought out for host-processor instructions.

4.6. Digital Audio Interface (Si4741/43/45 only)

The digital audio interface operates in slave mode and supports three different audio data formats:

- I²S
- Left-Justified
- DSP Mode

4.6.1. Audio Data Formats

In I^2S mode, by default the MSB is captured on the second rising edge of DCLK following each DFS transition. The remaining bits of the word are sent in order, down to the LSB. The left channel is transferred first when the DFS is low, and the right channel is transferred when the DFS is high.

In Left-Justified mode, by default the MSB is captured on the first rising edge of DCLK following each DFS transition. The remaining bits of the word are sent in order, down to the LSB. The left channel is transferred first when the DFS is high, and the right channel is transferred when the DFS is low.

In DSP mode, the DFS becomes a pulse with a width of one DCLK period. The left channel is transferred first, followed right away by the right channel. There are two options in transferring the digital audio data in DSP mode: the MSB of the left channel can be transferred on the first rising edge of DCLK following the DFS pulse or on the second rising edge.

In all audio formats, depending on the word size, DCLK frequency and sample rates, there may be unused DCLK cycles after the LSB of each word before the next DFS transition and MSB of the next word. In addition, if preferred, the user can configure the MSB to be captured on the falling edge of DCLK via properties.

The number of audio bits can be configured for 8, 16, 20, or 24 bits.

4.6.2. Audio Sample Rates

The device supports a number of industry-standard sampling rates including 32, 40, 44.1, and 48 kHz.

Si4740/41/42/43/44/45-C10

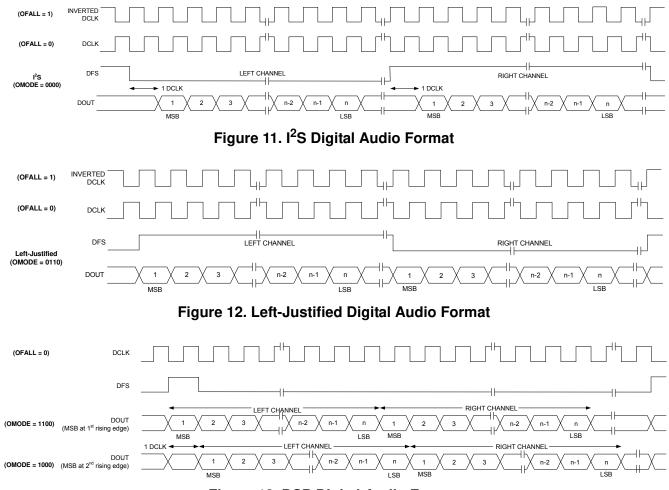


Figure 13. DSP Digital Audio Format

4.7. Stereo Audio Processing

The output of the FM demodulator is a stereo multiplexed (MPX) signal. The MPX standard was developed in 1961, and is used worldwide. Today's MPX signal format consists of left + right (L+R) audio, left – right (L–R) audio, a 19 kHz pilot tone, and RDS/RBDS data as shown in Figure 14 below.

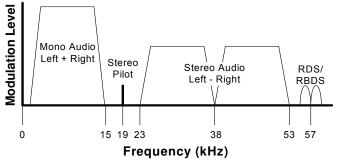


Figure 14. MPX Signal Spectrum

4.7.1. Stereo Decoder

The Si4740/41/42/43/44/45-C10's integrated stereo decoder automatically decodes the MPX signal using DSP techniques. The 0 to 15 kHz (L+R) signal is the mono output of the FM tuner. Stereo is generated from the (L+R), (L–R), and a 19 kHz pilot tone. The pilot tone is used as a reference to recover the (L–R) signal. The left and right channels are obtained by adding and

subtracting the (L+R) and (L-R) signals, respectively.

4.7.2. Stereo-Mono Blending

Adaptive noise suppression is employed to gradually combine the stereo (L–R) audio signal to a mono (L+R) audio signal as the signal quality degrades to maintain optimum sound fidelity under varying reception conditions. Three metrics, received signal strength indicator (RSSI), signal-to-noise ratio (SNR), and multipath interference, are monitored simultaneously in forcing a blend from stereo to mono. The metric which reflects the minimum signal quality takes precedence and the signal is blended appropriately.

All three metrics have programmable stereo/mono thresholds and attack/release rates as shown in the Table 15 and Table 16.

If a metric falls below its mono threshold, the signal is blended from stereo to full mono. If all metrics are above their respective stereo thresholds, then no action is taken to blend the signal. If a metric falls between its mono and stereo thresholds, then the signal is blended to the level proportional to the metric's value between its mono and stereo thresholds, with an associated attack and release rate. Figure 15, "Stereo-Mono Blend Based on Active Monitoring of RSSI, SNR, and Multi-Path Interference," on page 25 illustrates the stereo-mono blend. Stereo/mono status can be monitored with the FM_RSQ_STATUS command.

Table 15. Blend Threshold Properties

RSSI	FM_BLEND_RSSI_STEREO_THRESHOLD	FM_BLEND_RSSI_MONO_THRESHOLD
SNR	FM_BLEND_SNR_STEREO_THRESHOLD	FM_BLEND_SNR_MONO_THRESHOLD
Multi-path interference	FM_BLEND_MULTIPATH_STEREO_THRESHOLD	FM_BLEND_MULTIPATH_MONO_THRESHOLD

RSSI	FM_BLEND_RSSI_ATTACK_RATE	FM_BLEND_RSSI_RELEASE_RATE
SNR	FM_BLEND_SNR_ATTACK_RATE	FM_BLEND_SNR_RELEASE_RATE
Multi-path interference	FM_BLEND_MULTIPATH_ATTACK_RATE	FM_BLEND_MULTIPATH_RELEASE_RATE

Table 16. Blend Attack/Release Rate Properties

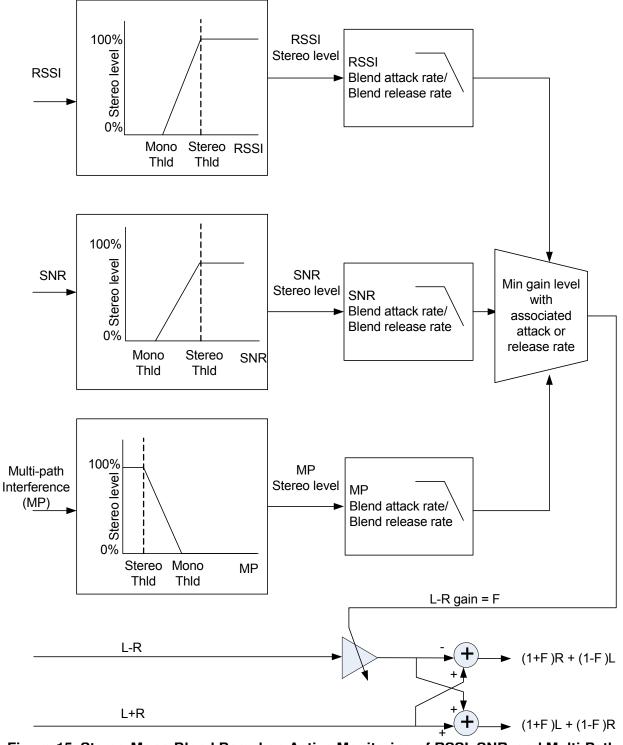


Figure 15. Stereo-Mono Blend Based on Active Monitoring of RSSI, SNR, and Multi-Path Interference

