imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Si53102-A1/A2/A3

PCI-EXPRESS GEN 1, GEN 2, GEN 3, AND GEN 4 1:2 Fan-out Clock Buffer

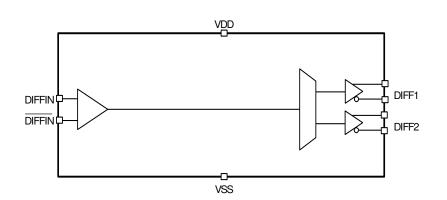
Features

 PCI-Express Gen 1, Gen 2, Gen 3, and Gen 4 common clock compliant

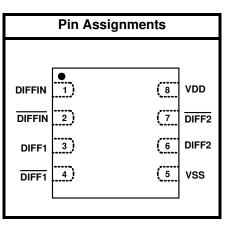
- Two low-power PCIe clock outputs
- Supports Serial-ATA (SATA) at 100 MHz
- No termination resistors required for differential clocks
- 2.5 V or 3.3 V Power supply
- Spread Spectrum Tolerant
- Extended Temperature:

–40 to 85 °C

- Small package 8-pin TDFN (1.4x1.6 mm)
- For PCIe Gen 1: Si53102-A1
- For PCIe Gen 2: Si53102-A2
- For PCIe Gen 3/4: Si53102-A3


Applications

- Network Attached Storage
- Multi-function Printer
- Wireless Access Point
- Server/Storage


Description

Si53102-A1/A2/A3 is a family of high-performance 1:2 PCle fan output buffers. This low-additive-jitter clock buffer family is compliant to PCle Gen 1, Gen 2, Gen 3, and Gen 4 specifications. The ultra-small footprint (1.4x1.6 mm) and industry-leading low power consumption make the Si53102-A1/A2/A3 the ideal clock solution for consumer and embedded applications. Measuring PCle clock jitter is quick and easy with the Silicon Labs PCle Clock Jitter Tool. Download it for free at www.silabs.com/pcie-learningcenter.

Functional Block Diagram

Patents pending

TABLE OF CONTENTS

Table of Contents

<u>Page</u>

. Electrical Specifications	
Recommended Design Guideline	
. Pin Descriptions	
. Ordering Guide	I
. Package Outlines	2
2. PCB Land Pattern	3
Ocument Change List	1

1. Electrical Specifications

Table 1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply Voltage (3.3 V Supply)	V _{DD}	3.3 V ± 10%	2.97	3.3	3.63	V
Supply Voltage (2.5 V Supply)	V_{DD}	2.5 V ± 10%	2.25	2.5	2.75	V

Table 2. DC Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Voltage (VDD = 3.3 V)	V _{DD}	3.3 V ± 10%	2.97	3.30	3.63	V
Operating Voltage (VDD = 2.5 V)	V _{DD}	2.5 V ± 10%	2.25	2.5	2.75	V
Operating Supply Current	I _{DD}	Full Active		_	12	mA
Input Pin Capacitance	C _{IN}	Input Pin Capacitance	—	3	5	pF
Output Pin Capacitance	C _{OUT}	Output Pin Capacitance	—	_	5	pF

Parameter	Symbol	Condition	Min	Тур	Max	Unit
DIFFIN at 0.7 V			1			
Input frequency	Fin		10	100	175	MHz
DIFFIN and DIFFIN Rising/Falling Slew Rate	T _R / T _F	Single ended measurement: $V_{OL} = 0.175$ to $V_{OH} = 0.525$ V (Averaged)	0.6	—	4	V/ns
Differential Input High Voltage	V _{IH}		150	—	_	mV
Differential Input Low Voltage	V _{IL}		—	—	-150	mV
Crossing Point Voltage at 0.7 V Swing	V _{OX}	Single-ended measurement	250	—	550	mV
Vcross Variation Over All edges	ΔV_{OX}	Single-ended measurement	_	_	140	mV
Differential Ringback Voltage	V _{RB}		-100	—	100	mV
Time before Ringback Allowed	T _{STABLE}		500	—	_	ps
Absolute Maximum Input Voltage	V _{MAX}			—	1.15	V
Absolute Minimum Input Voltage	V _{MIN}		-0.3	—	_	V
DIFFIN and DIFFIN Duty Cycle	T _{DC}	Measured at crossing point $V_{\mbox{OX}}$	45	—	55	%
Rise/Fall Matching	T _{RFM}	Determined as a fraction of $2 \times (T_R - T_F)/(T_R + T_F)$	—	—	20	%
DIFF Clocks	•					
Duty Cycle	T _{DC}	Measured at crossing point V_{OX}	45	—	55	%
Output Skew	T _{SKEW}	Measured at 0 V differential	_	_	100	ps
Frequency Accuracy	F _{ACC}	All output clocks	—	—	100	ppm
Slew Rate	t _{r/f2}	Measured differentially from ±150 mV	0.6	—	4.0	V/ns
PCIe Gen 1 Pk-Pk Additive Jitter	Pk- Pk _{GEN1}	PCle Gen 1 Si53102-A1	_	_	10	ps
PCIe Gen 2 Additive Phase Jitter	RMS _{GEN2}	10 kHz < F < 1.5 MHz, Si53102-A2	-	—	0.50	ps
PCIe Gen 2 Additive Phase Jitter	RMS _{GEN2}	1.5 MHz < F < Nyquist, Si53102-A2	_		0.50	ps
PCIe Gen 3 Additive Phase Jitter	RMS _{GEN3}	Includes PLL BW 2–4 MHz, CDR = 10 MHz, Si53102-A3	_	_	0.20	ps
PCIe Gen 4 Additive Phase Jitter	RMS _{GEN4}	PCIe Gen 4			0.20	ps
Crossing Point Voltage at 0.7 V Swing	V _{OX}		300		550	mV
Enable/Disable and Setup		-				
Clock Stabilization from Powerup	T _{STABLE}	Power up to first output	_	_	3.0	ms
Notes:	1		1	1		

Visit www.pcisig.com for complete PCIe specifications.
 Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.
 Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.

Table 4. Thermal Conditions

Parameter	Symbol	Condition	Min	Тур	Мах	Unit
Temperature, Storage	Τ _S	Non-functional	-65		150	°C
Temperature, Operating Ambient	T _A	Functional	-40		85	°C
Temperature, Junction	TJ	Functional	_		150	°C
Dissipation, Junction to Case	θ_{JC}	JEDEC (JESD 51)	_		38.3	°C/W
Dissipation, Junction to Ambient	θ_{JA}	JEDEC (JESD 51)			90.4	°C/W

Table 5. Absolute Maximum Conditions

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Main Supply Voltage	V _{DD_3.3V}		—		4.6	V
Input Voltage	V _{IN}	Relative to V_{SS}	-0.5		4.6	V_{DC}
ESD Protection (Human Body Model)	ESD _{HBM}	JEDEC (JESD 22-A114)	2000			V
Flammability Rating	UL-94	UL (Class)		V–0		
Note: While using multiple power supplies, Power supply sequencing is NOT rea		any input or I/O pin cannot exc	eed the p	ower pin (during po	werup.

2. Test and Measurement Setup

Figures 1 through 3 show the test load configuration for the differential clock signals.

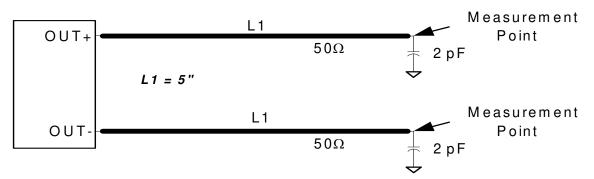


Figure 1. 0.7 V Differential Load Configuration

The outputs from this device can also support LVDS, LVPECL, or CML differential signaling levels using alternative termination. For recommendations on how to achieve this, see "AN781: Alternative Output Termination for Si5213x, Si5214x, Si5121x, and Si5315x PCIe Clock Generator and Buffer Families" at www.silabs.com.

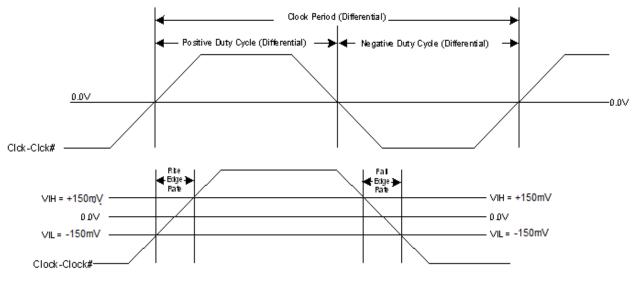
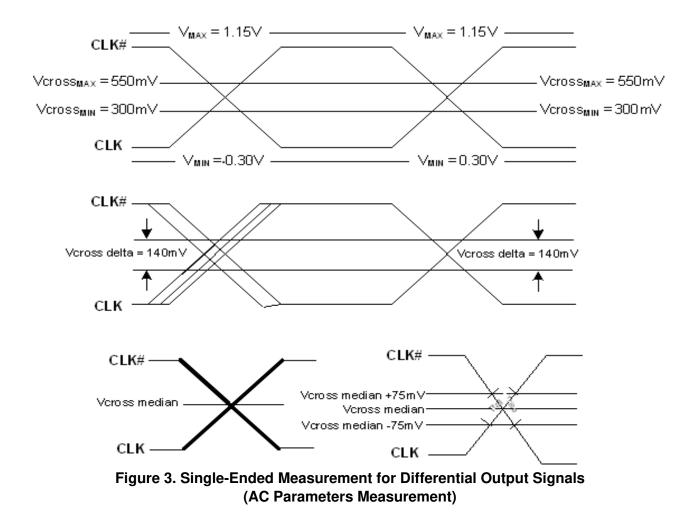
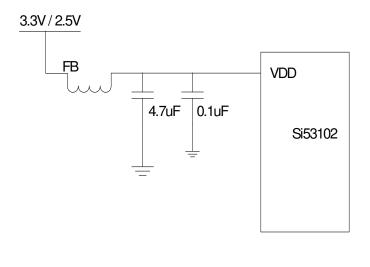
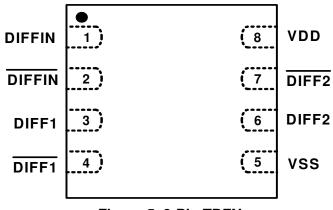



Figure 2. Differential Measurement for Differential Output Signals (AC Parameters Measurement)



Si53102-A1/A2/A3

3. Recommended Design Guideline



Note: FB Specifications: DC resistance $0.1-0.3 \Omega$ Impedance at 100 MHz \geq 1000 Ω

Figure 4. Recommended Application Schematic

4. Pin Descriptions

Figure 5. 8-Pin TDFN

Table 6. Si53102-Ax-GM 8-Pin TDFN Descriptions

Pin #	Name	Туре	Description
1	DIFFIN	O, DIF	0.7 V, 100 MHz differentials clock input
2	DIFFIN	O, DIF	0.7 V, 100 MHz differentials clock input
3	DIFF1	O, DIF	0.7 V, 100 MHz differential clock output
4	DIFF1	O, DIF	0.7 V, 100 MHz differential clock output
5	GND	GND	Ground
6	DIFF2	O, DIF	0.7 V, 100 MHz differential clock output
7	DIFF2	O, DIF	0.7 V, 100 MHz differential clock output
8	VDD	PWR	2.5 V or 3.3 V Power supply

5. Ordering Guide

Part Number	Package Type	Temperature
Si53102-A1-GM	8-pin TDFN	Extended, -40 to 85 °C
Si53102-A1-GMR	8-pin TDFN—Tape and Reel	Extended, -40 to 85 °C
Si53102-A2-GM	8-pin TDFN	Extended, -40 to 85 °C
Si53102-A2-GMR	8-pin TDFN—Tape and Reel	Extended, -40 to 85 °C
Si53102-A3-GM	8-pin TDFN	Extended, -40 to 85 °C
Si53102-A3-GMR	8-pin TDFN—Tape and Reel	Extended, -40 to 85 °C

6. Package Outlines

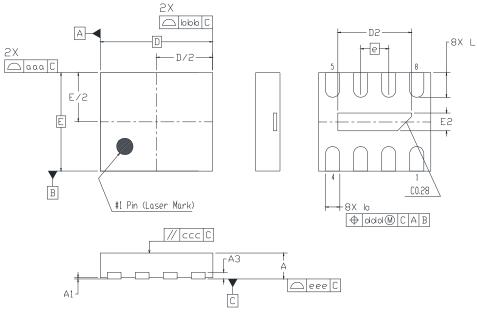


Figure 6. 8-Pin TDFN Package Drawing

Dimension	Min	Nom	Max
A	0.70	0.75	0.80
A1	0.00	0.02	0.05
A3		0.20 REF.	
b	0.15	0.20	0.25
D		1.60 BSC	
D2	1.00	1.05	1.10
е		0.40 BSC	
E		1.40 BSC	
E2	0.20	0.25	0.30
L	0.30	0.35	0.40
aaa		0.10	
bbb		0.10	
CCC		0.10	
ddd		0.07	
eee		0.08	
Notes:			

Table 7. Package Diagram Dimensions

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

7. PCB Land Pattern

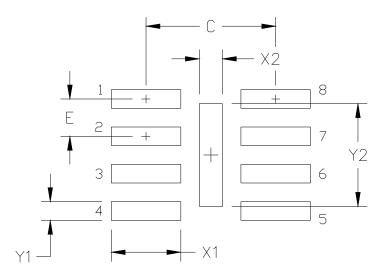


Figure 7. Si53102 8-Pin TDFN Land Pattern

Table 8. Si53102 8-Pin Land	Pattern Dimensions
-----------------------------	--------------------

C 1.40 E 0.40 X1 0.75 Y1 0.20 X2 0.25					
X1 0.75 Y1 0.20					
Y1 0.20					
X2 0.25					
Y2 1.10					
 Notes: General All dimensions shown are in millimeters (mm). This Land Pattern Design is based on the IPC-7351 guidelines. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance 0.05 mm. Solder Mask Design All math and a set to be per calder mask defined (NSMD). Clearance 					
 All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad. Stencil Design 					

- **5.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 6. The stencil thickness should be 0.125 mm (5 mils).

7. The ratio of stencil aperture to land pad size should be 1:1 for all pads.

Card Assembly

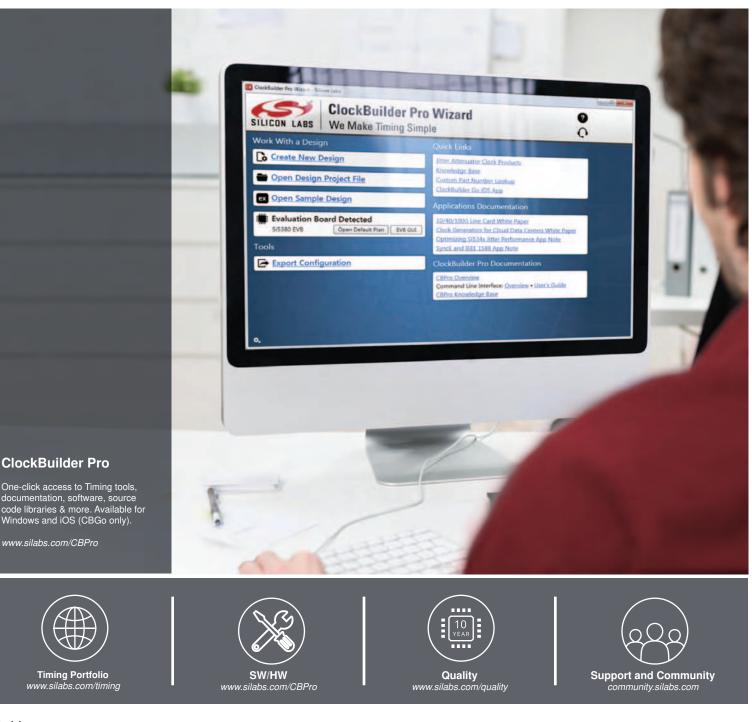
8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

DOCUMENT CHANGE LIST

Revision 0.4 to Revision 1.0

- Updated Table 3 on page 5.
 - Updated input frequency min and max specs.
- Updated "2. Test and Measurement Setup" on page 7.
 - Added text and reference to AN781.


Revision 1.0 to Revision 1.1

- Moved "3. Recommended Design Guideline" to page 9.
- Corrected Figure 5 title on page 10.
- Corrected Table 6 title on page 10.
- Corrected Figure 6 title on page 12.
- Added "7. PCB Land Pattern" on page 13.

Revision 1.1 to Revision 1.2

- Updated Features on page 1.
- Updated Description on page 1.
- Updated specs in Table 3, "AC Electrical Specifications," on page 5.

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific to result in significant personal injury or death. Silicon Laboratories products are generally not intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products not be used in weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com