imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

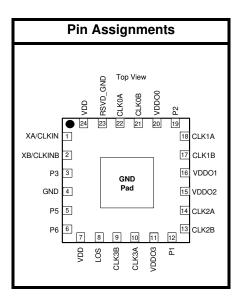
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Si5335

WEB-CUSTOMIZABLE, ANY-FREQUENCY, ANY-OUTPUT QUAD CLOCK GENERATOR/BUFFER

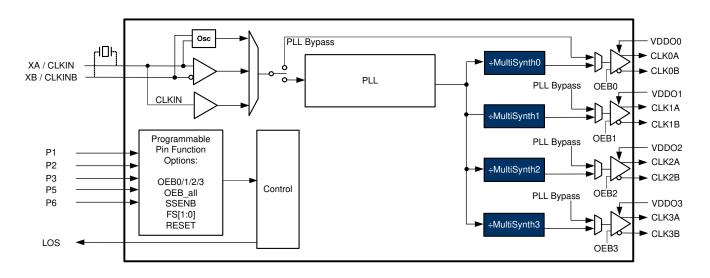
Features

- Low power MultiSynth[™] technology enables independent, any-frequency synthesis of four frequencies
- Configurable as a clock generator or clock buffer device
- Three independent, user-assignable, pinselectable device configurations
- Highly-configurable output drivers with up to four differential outputs, eight single-ended clock outputs, or a combination of both
- Low phase jitter of 0.7 ps RMS
- Flexible input reference:
 - External crystal: 25 or 27 MHz
 - CMOS input: 10 to 200 MHz
 - SSTL/HSTL input: 10 to 350 MHz
 - Differential input: 10 to 350 MHz
- Independently configurable outputs support any frequency or format:
 - LVPECL/LVDS/CML: 1 to 350 MHz
 - HCSL: 1 to 250 MHz
 - CMOS: 1 to 200 MHz
 - SSTL/HSTL: 1 to 350 MHz


- Independent output voltage per driver:
 1.5, 1.8, 2.5, or 3.3 V
- Single supply core with excellent PSRR: 1.8, 2.5, 3.3 V
- Up to five user-assignable pin functions simplify system design: SSENB (spread spectrum control), RESET, Master OEB or OEB per pin, and Frequency plan select (FS1, FS0)
- Loss of signal alarm
- PCIe Gen 1/2/3/4 common clock compliant
- PCIe Gen 3 SRNS Compliant
- Two selectable loop bandwidth settings: 1.6 MHz or 475 kHz
- Easy to customize with web-based utility
- Small size: 4 x 4 mm, 24-QFN
- Low power (core):
- 45 mA (PLL mode)
- 12 mA (Buffer mode)
- Wide temperature range: -40 to +85 °C

- Applications
- Ethernet switch/router
- PCI Express Gen 1/2/3/4
- PCIe jitter attenuation
- DSL jitter attenuation
- Broadcast video/audio timing

Description


The Si5335 is a highly flexible clock generator capable of synthesizing four completely non-integer-related frequencies up to 350 MHz. The device has four banks of outputs with each bank supporting one differential pair or two single-ended outputs. Using Silicon Laboratories' patented MultiSynth fractional divider technology, all outputs are guaranteed to have 0 ppm frequency synthesis error regardless of configuration, enabling the replacement of multiple clock ICs and crystal oscillators with a single device. The Si5335 supports up to three independent, pin-selectable device configurations, enabling one device to replace three separate clock generators or buffer ICs. To ease system design, up to five user-assignable and pin-selectable control pins are provided, supporting PCIe-compliant spread spectrum control, master and/or individual output enables, frequency plan selection, and device reset. Two selectable PLL loop bandwidths support jitter attenuation in applications, such as PCIe and DSL. Through its flexible ClockBuilder™ (www.silabs.com/ClockBuilder) web configuration utility, factory-customized, pin-controlled devices are available in two weeks without minimum order quantity restrictions. Measuring PCIe clock jitter is quick and easy with the Silicon Labs PCIe Clock Jitter Tool. Download it for free at www.silabs.com/pcie-learningcenter.

- -00 Co+
 - Processor and FPGA clocking
 - MSAN/DSLAM/PON
 - Fibre Channel, SAN
 Telecom line cards
 - Telecom line cards
 1 GbE and 10 GbE

Functional Block Diagram

TABLE OF CONTENTS

Section

<u>Page</u>

1. Electrical Specifications 2. Typical PCIe System Diagram	16
3. Functional Description	
3.1. Overview	
3.2. MultiSynth Technology	
3.3. ClockBuilder Web-Customization Utility	
3.4. Input Configuration	
3.5. Input and Output Frequency Configuration	
3.6. Multi-Function Control Inputs	
3.7. Output Enable	
3.8. Frequency Select/Device Reset	
3.9. Loss-of-Signal Alarm	
3.10. Output Stage	
4. Power Consumption	
5. Spread Spectrum	
6. Jitter Performance	
7. Power Supply Considerations	
8. Loop Bandwidth Considerations	
9. Applications of the Si5335	
9.1. Free-Running Clock Generator	
9.2. Synchronous Frequency Translation	
9.3. Configurable Universal Buffer and Level Translator	
10. Pin Descriptions	
11. Ordering Information	
12. Package Outline: 24-Lead QFN	
13. Recommended PCB Land Pattern	
14. Top Marking	
14.1. Si5335 Top Marking	
14.2. Top Marking Explanation	
15. Device Errata	
Document Change List	46

1. Electrical Specifications

Table 1. Recommended Operating Conditions

 $(V_{DD} = 1.8 \text{ V} - 5\% \text{ to } +10\%, 2.5 \text{ V} \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, \text{T}_{A} = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
Ambient Temperature	T _A		-40	25	85	°C		
Core Supply Voltage			2.97	3.3	3.63	V		
	V _{DD}		2.25	2.5	2.75	V		
			1.71	1.8	1.98	V		
Output Buffer Supply Voltage	V _{DDOn}		1.4	_	3.63	V		
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.								

Table 2. DC Characteristics

(V_{DD} = 1.8 ~V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, T_A = –40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Core Supply Current (Clock Generator Mode)	IDDCG	100 MHz on all outputs, 25 MHz refclk, clock generator mode	_	45	60	mA
Core Supply Current (Buffer Mode)	I _{DDB}	50 MHz refclk		12	_	mA
		LVPECL, 350 MHz		_	30	mA
		CML, 350 MHz	_	12	_	mA
		LVDS, 350 MHz		_	8	mA
	I _{DDOx}	HCSL, 250 MHz 2 pF load	_		20	mA
		SSTL, 350 MHz		_	19	mA
Output Buffer Supply Current		CMOS, 50 MHz 15 pF load ¹	_	6	9	mA
		CMOS, 200 MHz ^{1,2} 3.3 V VDD0	—	13	18	mA
		CMOS, 200 MHz ^{1,2} 2.5 V	_	10	14	mA
		CMOS, 200 MHz ^{1,2} 1.8 V	_	7	10	mA
		HSTL, 350 MHz	_	_	19	mA

2. Measured into a 5" 50 Ω trace with 2 pF load.

Table 3. Performance Characteristics

 $(V_{DD} = 1.8 V - 5\% \text{ to } +10\%, 2.5 V \pm 10\%, \text{ or } 3.3 V \pm 10\%, T_A = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
PLL Acquisition Time	t _{ACQ}	1.6 MHz loop bandwidth	_	_	25	ms
PLL Tracking Range	f _{TRACK}	475 kHz or 1.6 MHz loop bandwidth	5000	20000	_	ppm
DI Lean Dandwidth	f _{BW1}	High bandwidth option	_	1.6	_	MHz
PLL Loop Bandwidth	f _{BW2}	Low bandwidth option	_	475	_	kHz
MultiSynth Frequency Synthesis Resolution	f _{RES}	Output frequency ≤ Fvco/8	0	0	1	ppb
CLKIN Loss of Signal Detect Time	t _{LOS}		—	2.6	5	μs
CLKIN Loss of Signal Release Time	t _{LOSRLS}		0.01	0.2	1	μs
POR to Output Clock Valid	t _{RDY}		_	—	2	ms
Input-to-Output Propagation Delay	t _{PROP}	Buffer Mode (PLL Bypass)	_	2.5	4	ns
Reset Minimum Pulse Width	t _{RESET}		—	_	200	ns
Output-Output Skew ¹	t _{DSKEW}	F _{OUT} ≥ 5 MHz	—	—	100	ps
Spread Spectrum PP Frequency Deviation ²	SS _{DEV}	F _{OUT} = 100 MHz	—	-0.45	-0.5	%
Spread Spectrum Modulation Rate ³	SS _{DEV}	F _{OUT} = 100 MHz	30	31.5	33	kHz
Notos:	•		•	•	-	

Notes:

Outputs at integer-related frequencies and using the same driver format.
 Default value is 0.5% down spread.
 Default value is 31.5 kHz for PCI compliance.

Table 4. Input and Output Clock Characteristics

 $(V_{DD} = 1.8 \text{ V} - 5\% \text{ to } +10\%, 2.5 \text{ V} \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input Clock (AC Cou	pled Diffe	rential Input Clocks or	n Pins 1 and 2) ¹			
Frequency	f _{IN}	LVDS, LVPECL, HCSL, CML	10 ²	—	350	MHz
Differential Voltage Swing	V _{PP}	350 MHz input	0.4	-	2.4	V _{PP}
Rise/Fall Time ³	t _R /t _F	20%–80%	—	_	1.0	ns
	DC (PLL mode)	< 1 ns t _R /t _F	40	_	60	%
Duty Cycle ³ Duty Cycle ³ (P (P byp mo		< 1 ns t _R /t _F	45	_	55	%
Input Impedance ¹	R _{IN}		10	_		kΩ
Input Capacitance	C _{IN}		_	3.5	_	pF
Input Clock (AC-Cou	pled Sing	le-Ended Input Clock	on Pin 1)	<u> </u>		
Frequency	f _{IN}	CMOS, HSTL, SSTL	10 ²	—	200	MHz
CMOS Input Voltage Swing	VI	200 MHz	0.8	—	1.2	Vpp
CMOS Rise/Fall Time	t _R /t _F	10%–90%	_	_	4	ns
CMOS Rise/Fall Time	t _R /t _F	20%-80%	—	—	2.3	ns
HSTL/SSTL Input Voltage	V _{I(HSTL/} SSTL)	200 MHz	0.4	—	1.2	V _{PP}
HSTL/SSTL Rise/Fall Time	t _R /t _F	10%–90%	_	_	1.4	ns

Notes:

1. Use an external 100 Ω resistor to provide load termination for a differential clock. See "3.4.2. Differential Input Clocks" on page 19.

2. Minimum input frequency in clock buffer mode (PLL bypass) is 5 MHz. Operation to 1 MHz is also supported in buffer mode, but loss-of-signal (LOS) status is not functional.

3. Applies to differential inputs. For best jitter performance, keep the midpoint peak-to-peak differential input slew rate on pins 1 and 2 faster than 0.3 V/ns.

4. CML output format requires ac-coupling of the differential outputs to a differential 100 Ω load at the receiver. See "3.10.6. CML Outputs" on page 31.

5. Includes effect of internal series 22 Ω resistor.

Table 4. Input and Output Clock Characteristics (Continued)

		\sim
$(V_{DD} = 1 \times V - 5\% \times 10 + 10\%)$	2.5 V ±10%, or 3.3 V ±10%, T _A = -40 to 85 °	()
$(U_{DD} = 1.0 U_{O} = 0.0 0.0 110.000$		Ξ,

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
	DC (PLL mode)		40	_	60	%
Duty Cycle	DC (PLL bypass mode)	< 1 ns t _R /t _F	45	_	55	%
Input Capacitance	C _{IN}		_	3.5	_	pF
Output Clocks (Diffe	rential)					ŀ
Freeseware	£	LVPECL, LVDS, CML	1	—	350	MHz
Frequency	fout	HCSL	1		250	MHz
LVPECL	V _{OC}	common mode	_	V _{DDO} - 1.45 V	_	V
Output Voltage	V _{SEPP}	peak-to-peak single- ended swing	0.55	0.8	0.96	V _{PP}
LVDS Output Voltage	V _{OC}	common mode	1.125	1.2	1.275	V
(2.5/3.3 V)	V _{SEPP}	peak-to-peak single- ended swing	0.25	0.35	0.45	V _{PP}
LVDS Output	V _{OC}	common mode	0.8	0.875	0.95	V
Voltage (1.8 V)	V _{SEPP}	peak-to-peak single- ended swing	0.25	0.35	0.45	V _{PP}
	V _{OC}	common mode	0.35	0.375	0.400	V
HCSL Output Voltage	V _{SEPP}	peak-to-peak single- ended swing	0.575	0.725	0.85	V _{PP}
	V _{OC}	Common Mode	_	See Note ⁴	_	V
CML Output Voltage	V _{SEPP}	Peak-to-Peak Single- ended Swing	0.67	0.860	1.07	V _{PP}
Rise/Fall Time	t _R /t _F	20% to 80% LVPECL, LVDS, HCSL, CML	_	_	450	ps

Notes:

1. Use an external 100 Ω resistor to provide load termination for a differential clock. See "3.4.2. Differential Input Clocks" on page 19.

2. Minimum input frequency in clock buffer mode (PLL bypass) is 5 MHz. Operation to 1 MHz is also supported in buffer mode, but loss-of-signal (LOS) status is not functional.

3. Applies to differential inputs. For best jitter performance, keep the midpoint peak-to-peak differential input slew rate on pins 1 and 2 faster than 0.3 V/ns.

4. CML output format requires ac-coupling of the differential outputs to a differential 100 Ω load at the receiver. See "3.10.6. CML Outputs" on page 31.

5. Includes effect of internal series 22 Ω resistor.

Table 4. Input and Output Clock Characteristics (Continued)

 $(V_{DD} = 1.8 \text{ V} - 5\% \text{ to } + 10\%, 2.5 \text{ V} \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Duty Cycle	DC	LVPECL, LVDS, HCSL, CML	45	_	55	%
Output Clocks (Sing	le-Ended)					
Frequency	f	CMOS	1	_	200	MHz
Frequency	fout	SSTL, HSTL	1	_	350	MHz
CMOS 20%–80% Rise/Fall Time	t _R /t _F	2 pF load	_	0.45	0.85	ns
CMOS 20%–80% Rise/Fall Time	t _R /t _F	15 pF load	_	_	2.0	ns
CMOS	V _{OH}	4 mA load	VDDO - 0.3	_		V
Output Voltage ⁵	V _{OL}	4 mA load		_	0.3	V
CMOS Output Resistance ⁵			_	50	—	Ω
HSTL, SSTL 20%–80% Rise/Fall Time	t _R /t _F	See Figure 16.	_	0.35	_	ns
HSTL Output Voltage	V _{OH}	VDDO = 1.4 to 1.6 V	0.5xVDDO+0.3	—	—	V
	V _{OL}	VDDO = 1.4 (0 1.0 V)	—	_	0.5xVDDO0.3	V
	V _{OH}	SSTL-3	0.45xVDDO+0.41	_	—	V
	V _{OL}	VDDOx = 2.97 to 3.63 V	_	_	0.45xVDDO-0.41	V
SSTL Output Voltage	V _{OH}	SSTL-2 VDDOx =	0.5xVDDO+0.41	_	—	V
SSTE Output Voltage	V _{OL}	2.25 to 2.75 V	—	_	0.5xVDDO-0.41	V
	V _{OH}	SSTL-18	0.5xVDDO+0.34			V
	V _{OL}	VDDOx = 1.71 to 1.98 V	_	_	0.5xVDDO-0.34	V
HSTL, SSTL Output Resistance			_	50	-	Ω
Duty Cycle	DC		45	_	55	%

Notes:

1. Use an external 100 Ω resistor to provide load termination for a differential clock. See "3.4.2. Differential Input Clocks" on page 19.

2. Minimum input frequency in clock buffer mode (PLL bypass) is 5 MHz. Operation to 1 MHz is also supported in buffer mode, but loss-of-signal (LOS) status is not functional.

3. Applies to differential inputs. For best jitter performance, keep the midpoint peak-to-peak differential input slew rate on pins 1 and 2 faster than 0.3 V/ns.

4. CML output format requires ac-coupling of the differential outputs to a differential 100 Ω load at the receiver. See "3.10.6. CML Outputs" on page 31.

5. Includes effect of internal series 22 Ω resistor.

Table 5. Control Pins*

(V_{DD} = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, T_A = –40 to 85 °C)

Parameter	Symbol	Condition	Min	Тур	Max	Unit				
nput Control Pins (P1, P2, P3, P5*, P6*)										
	V	Pins P1, P2, P3	-0.1	—	$0.3 \times V_{DD}$	V				
Input Voltage Low	V _{IL}	Pins P5 and P6	—	_	0.3	V				
Input Voltage High	V	Pins P1, P2, P3	$0.7 \times V_{DD}$		3.73	V				
	V _{IH}	Pins P5* and P6*	0.85	—	1.2	V				
Input Capacitance	C _{IN}		—	—	4	pF				
Input Resistance	R _{IN}		—	20	—	kΩ				
Output Control Pins (LOS, P	Pin 8)									
Output Voltage Low	V _{OL}	I _{SINK} = 3 mA	0	—	0.4	V				
Rise/Fall Time 20–80%	t _R /t _F	$C_L < 10 \text{ pf}, \text{ pull up} = 1 \text{ k}\Omega$	—		10	ns				
*Note: For more information, see	e "3.6.1. P5 and	P6 Input Control" on page 24.								

Table 6. Crystal Specifications for 25 MHz

Parameter	Symbol	Min	Тур	Max	Unit
Crystal Frequency	f _{XTAL}		25		MHz
Load Capacitance (on-chip differential)	cL	_	18	_	pF
Crystal Output Capacitance	c _O	—		5	pF
Equivalent Series Resistance	r _{ESR}	_		100	Ω
Crystal Max Drive Level	dL	100	_		μW

Table 7. Crystal Specifications for 27 MHz

Parameter	Symbol	Min	Тур	Max	Unit
Crystal Frequency	f _{XTAL}	_	27		MHz
Load Capacitance (on-chip differential)	cL	_	18	_	pF
Crystal Output Capacitance	c _O	—		5	pF
Equivalent Series Resistance	r _{ESR}	_	—	75	Ω
Crystal Max Drive Level	dL	100			μW

Table 8. Jitter Specifications, Clock Generator Mode (Loop Bandwidth = 1.6 MHz)^{1,2,3}

 $(V_{DD} = 1.8 \text{ V} - 5\% \text{ to } +10\%, 2.5 \text{ V} \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
GbE Random Jitter (12 kHz–20 MHz) ⁴	J _{GbE}	CLKIN = 25 MHz All CLKn at 125 MHz ⁵	_	0.7	1	ps RMS
GbE Random Jitter (1.875–20 MHz)	R_{JGbE}	CLKIN = 25 MHz All CLKn at 125 MHz ⁵		0.38	0.79	ps RMS
OC-12 Random Jitter (12 kHz–5 MHz)	J _{OC12}	CLKIN = 19.44 MHz All CLKn at 155.52 MHz ⁵		0.7	1	ps RMS
PCI Express 1.1 Common Clocked (with spread spectrum)		Total Jitter ⁶	_	20.1	33.6	ps pk-pk
PCI Express 2.1 Common		RMS Jitter ⁶ , 10 kHz to 1.5 MHz	_	0.15	1.47	ps RMS
Clocked (no spread spec- trum)		RMS Jitter ⁶ , 1.5 MHz to 50 MHz	_	0.58	0.75	ps RMS
PCI Express 3.0 Common Clocked (no spread spectrum)		RMS Jitter ⁶	_	0.15	0.45	ps RMS
PCIe Gen 3 Separate Reference No Spread, SRNS		PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz	_	0.11	0.32	ps RMS
PCle Gen 4, Common Clock		PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz		0.15	0.45	ps RMS
Period Jitter	J _{PER}	N = 10,000 cycles ⁷		10	30	ps pk-pk

Notes:

1. All jitter measurements apply for LVDS/HCSL/LVPECL/CML output format with a low noise differential input clock and are made with an Agilent 90804 oscilloscope. All RJ measurements use RJ/DJ separation.

- 2. All jitter data in this table is based upon all output formats being differential. When single-ended outputs are used, there is the potential that the output jitter may increase due to the nature of single-ended outputs. If your configuration implements any single-ended output and any output is required to have jitter less than 2 ps rms, contact Silicon Labs for support to validate your configuration and ensure the best jitter performance. In many configurations, CMOS outputs have little to no effect upon jitter.
- **3.** For best jitter performance, keep the single-ended clock input slew rates at pins 1 and 2 greater that 1.0 V/ns and the differential clock input slew rates greater than 0.3 V/ns.
- **4.** D_J for PCI and GbE is < 5 ps pp
- 5. Output MultiSynth in Integer mode.
- 6. All output clocks 100 MHz HCSL format. Jitter is from the PCIE jitter filter combination that produces the highest jitter. See AN562 for details. Jitter is mesured with the Intel Clock Jitter Tool, Ver.1.6.4.
- 7. For any output frequency \geq 10 MHz.
- 8. Measured in accordance with JEDEC standard 65.
- **9.** Rj is multiplied by 14; estimate the pp jitter from Rj over 2^{12} rising edges.
- **10.** Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.
- 11. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.

Table 8. Jitter Specifications, Clock Generator Mode (Loop Bandwidth = 1.6 MHz)^{1,2,3} (Continued) (V_{DD} = 1.8 V -5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, T_A = -40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Cycle-Cycle Jitter	J _{CC}	N = 10,000 cycles Output MultiSynth operated in integer or fractional mode ⁷	_	9	29	ps pk ⁸
Random Jitter (12 kHz–20 MHz)	R _J	Output and feedback MultiSynth in integer or fractional mode ⁷	_	0.7	1.5	ps RMS
Deterministic litter	Dj	Output MultiSynth operated in fractional mode ⁷	_	3	15	ps pk-pk
Deterministic Jitter	5	Output MultiSynth operated in integer mode ⁷	_	2	10	ps pk-pk
Total Jitter	$T_J = D_J + 14xR_J$	Output MultiSynth operated in fractional mode ⁷	_	13	36	ps pk-pk
(12 kHz–20 MHz)	(See Note ⁹)	Output MultiSynth operated in integer mode ⁷	_	12	20	ps pk-pk

Notes:

1. All jitter measurements apply for LVDS/HCSL/LVPECL/CML output format with a low noise differential input clock and are made with an Agilent 90804 oscilloscope. All RJ measurements use RJ/DJ separation.

- 2. All jitter data in this table is based upon all output formats being differential. When single-ended outputs are used, there is the potential that the output jitter may increase due to the nature of single-ended outputs. If your configuration implements any single-ended output and any output is required to have jitter less than 2 ps rms, contact Silicon Labs for support to validate your configuration and ensure the best jitter performance. In many configurations, CMOS outputs have little to no effect upon jitter.
- **3.** For best jitter performance, keep the single-ended clock input slew rates at pins 1 and 2 greater that 1.0 V/ns and the differential clock input slew rates greater than 0.3 V/ns.
- **4.** D_{I} for PCI and GbE is < 5 ps pp
- 5. Output MultiSynth in Integer mode.
- 6. All output clocks 100 MHz HCSL format. Jitter is from the PCIE jitter filter combination that produces the highest jitter. See AN562 for details. Jitter is mesured with the Intel Clock Jitter Tool, Ver.1.6.4.
- 7. For any output frequency \geq 10 MHz.
- 8. Measured in accordance with JEDEC standard 65.
- **9.** Rj is multiplied by 14; estimate the pp jitter from Rj over 2^{12} rising edges.
- 10. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.
- 11. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.

Table 9. Jitter Specifications, Clock Generator Mode (Loop Bandwidth = 475 kHz)^{1,2}

 $(V_{DD} = 1.8 \text{ V} - 5\% \text{ to } +10\%, 2.5 \text{ V} \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
DSL Random Jitter (10 kHz–400 kHz)	R _{JDSL1}	CLKIN = 70.656 MHz All CLKn at 70.656 MHz ⁴	_	0.8	2	ps RMS
DSL Random Jitter (100 kHz–10 MHz)	R _{JDSL2}	CLKIN = 70.656 MHz All CLKn at 70.656 MHz ⁴	_	0.9	2	ps RMS
DSL Random Jitter (10 Hz–30 MHz)	R _{JDSL3}	CLKIN = 70.656 MHz All CLKn at 70.656 MHz ⁴	_	1.95	2.2	ps RMS
PCI Express 1.1 Common Clocked (with spread spectrum)		Total Jitter ⁵	_	20	34	ps pk-pk
PCI Express 2.1 Common Clocked		RMS Jitter ⁵ , 10 kHz to 1.5 MHz	_	0.3	0.5	ps RMS
(no spread spectrum)		RMS Jitter ⁵ , 1.5 MHz to 50 MHz	_	0.5	1.0	ps RMS
PCI Express 3.0 Common Clocked (no spread spectrum)		RMS Jitter ⁵		0.15	0.45	ps RMS
PCIe Gen 3 Separate Reference No Spread, SRNS		PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz	_	0.11	0.32	ps RMS
PCle Gen 4, Common Clock		PLL BW of 2–4 or 2–5 MHz, – CDR = 10 MHz		0.15	0.45	ps RMS
Period Jitter	J _{PER}	N = 10,000 cycles ⁶	_	10	30	ps pk-pk

Notes:

1. All jitter measurements apply for LVDS/HCSL/LVPECL/CML output format with a low noise differential input clock and are made with an Agilent 90804 oscilloscope. All RJ measurements use RJ/DJ separation.

2. All jitter data in this table is based upon all output formats being differential. When single-ended outputs are used, there is the potential that the output jitter may increase due to the nature of single-ended outputs. If your configuration implements any single-ended output and any output is required to have jitter less than 2 ps rms, contact Silicon Labs for support to validate your configuration and ensure the best jitter performance. In many configurations, CMOS outputs have little to no effect upon jitter.

3. D_1 for PCI and GbE is < 5 ps pp

4. Output MultiSynth in Integer mode.

- 5. All output clocks 100 MHz HCSL format. Jitter is from the PCIE jitter filter combination that produces the highest jitter. See AN562 for details. Jitter is mesured with the Intel Clock Jitter Tool, Ver.1.6.4.
- **6.** For any output frequency \geq 5 MHz.
- 7. Measured in accordance with JEDEC standard 65.
- 8. Rj is multiplied by 14; estimate the pp jitter from Rj over 2^{12} rising edges.
- 9. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.
- 10. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.

Table 9. Jitter Specifications, Clock Generator Mode (Loop Bandwidth = 475 kHz)^{1,2} (Continued) (V_{DD} = 1.8 V -5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, T_A = -40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Cycle-Cycle Jitter	J _{CC}	N = 10,000 cycles Output MultiSynth operated in integer or fractional mode ⁶		9	29	ps pk ⁷
Random Jitter (12 kHz–20 MHz)	R _J	Output and feedback MultiSynth in integer or fractional mode ⁶		1	2.5	ps RMS
Deterministic Jitter	Dj	Output MultiSynth operated in fractional mode ⁶	_	3	15	ps pk-pk
Deterministic Jitter		Output MultiSynth operated in integer mode ⁶	_	2	10	ps pk-pk
Total Jitter	T _J = D _J +14xR _J (See Note ⁸)	Output MultiSynth operated in fractional mode ⁶	_	13	36	ps pk-pk
(12 kHz–20 MHz)	(See Note ⁸)	Output MultiSynth operated in integer mode ⁶		15	30	ps pk-pk

Notes:

1. All jitter measurements apply for LVDS/HCSL/LVPECL/CML output format with a low noise differential input clock and are made with an Agilent 90804 oscilloscope. All RJ measurements use RJ/DJ separation.

2. All jitter data in this table is based upon all output formats being differential. When single-ended outputs are used, there is the potential that the output jitter may increase due to the nature of single-ended outputs. If your configuration implements any single-ended output and any output is required to have jitter less than 2 ps rms, contact Silicon Labs for support to validate your configuration and ensure the best jitter performance. In many configurations, CMOS outputs have little to no effect upon jitter.

- **3.** D_J for PCI and GbE is < 5 ps pp
- 4. Output MultiSynth in Integer mode.

5. All output clocks 100 MHz HCSL format. Jitter is from the PCIE jitter filter combination that produces the highest jitter. See AN562 for details. Jitter is mesured with the Intel Clock Jitter Tool, Ver.1.6.4.

- 6. For any output frequency \geq 5 MHz.
- 7. Measured in accordance with JEDEC standard 65.
- 8. Rj is multiplied by 14; estimate the pp jitter from Rj over 2¹² rising edges.
- 9. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.

10. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.

Table 10. itter Specifications, Clock Buffer Mode (PLL Bypass)* (V_{DD} = 1.8 V -5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, T_A = -40 to 85°C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Additive Phase Jitter (12 kHz–20 MHz)	t _{RPHASE}	0.7 V pk-pk differential input clock at 350 MHz with 70 ps rise/fall time	_	0.165		ps RMS
Additive Phase Jitter (50 kHz–80 MHz)		0.7 V pk-pk differential input clock at 350 MHz with 70 ps rise/fall time	_	0.225		ps RMS
*Note: All outputs are in Clock Buffer mode (PLL Bypass).						

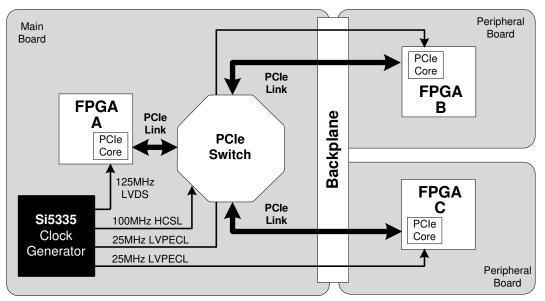
Table 11. Typical Phase Noise Performance

Offset Frequency	Loop Bandwidth	25 MHz XTAL to 156.25 MHz	27 MHz Ref In to 148.3517 MHz	19.44 MHz Ref In to 155.52 MHz	100 MHz Ref In to 100 MHz	Units
100 Hz	1.6 MHz	-90	-87	-110	-115	dBc/Hz
	475 kHz	N/A*	-91	-91	-113	dBc/Hz
1 kHz	1.6 MHz	-120	-117	-116	-122	dBc/Hz
	475 kHz	N/A*	-112	-111	-122	dBc/Hz
10 kHz	1.6 MHz	-126	-123	-123	-128	dBc/Hz
	475 kHz	N/A*	-124	-122	-127	dBc/Hz
100 kHz	1.6 MHz	-132	-130	-128	-136	dBc/Hz
	475 kHz	N/A*	-122	-121	-124	dBc/Hz
1 MHz	1.6 MHz	-132	-132	-128	-136	dBc/Hz
	475 kHz	N/A*	-133	-131	-135	dBc/Hz
10 MHz	1.6 MHz	-145	-145	-145	-152	dBc/Hz
	475 kHz	N/A*	-152	-153	-152	dBc/Hz
*Note: XTAL	input mode doe	s not support the 475	kHz loop bandwidth s	setting.		•

Table 12. Thermal Characteristics

Parameter	Symbol	Test Condition	Value	Unit
Thermal Resistance Junction to Ambient	θ_{JA}	Still Air	37	°C/W
Thermal Resistance Junction to Case	θ_{JC}	Still Air	25	°C/W

Table 13. Absolute Maximum Ratings¹


Parameter	Symbol	Test Condition	Value	Unit
DC Supply Voltage	V _{DD}		-0.5 to 3.8	V
Input Voltage	V _{IN}	Pins: XA/CLKIN, XB/CLKINB, P5, P6	-0.5 to 1.3	V
		Pins: P1, P2, P3	-0.5 to 3.8	V
Storage Temperature Range	T _{STG}		-55 to 150	°C
ESD Tolerance		HBM (100 pF, 1.5 kΩ)	2.5	kV
ESD Tolerance		CDM	550	V
ESD Tolerance		MM	175	V
Latch-up Tolerance			JESD78 C	Compliant
Junction Temperature	TJ		150	°C
Peak Soldering Reflow Temperature ²			260	°C
Notes:	I	1	11	

1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Refer to JEDEC J-STD-020 standard for more information.

2. Typical PCIe System Diagram

Figure 1. PCI Express Switching Application Example

Figure 1 shows the Si5335 in a PCI Express application using the common clock topology. The Si5335 provides reference clocks to the three FPGAs, each of which requires a different clock signaling format (LVDS, LVPECL), I/O voltage (1.8, 2.5, 3.3 V), or frequency (25, 100, 125 MHz). In addition, the Si5335 provides a PCIe compliant, 100 MHz HCSL reference clock to the PCIe switch.

3. Functional Description

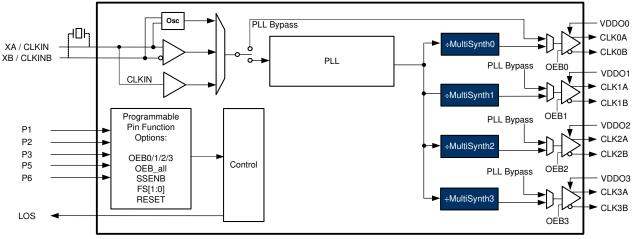
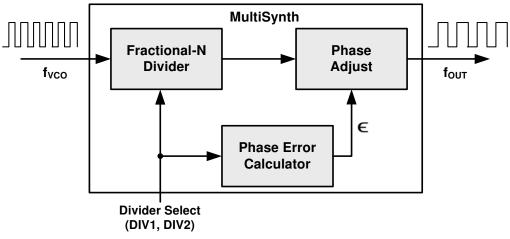


Figure 2. Si5335 Functional Block Diagram

3.1. Overview

The Si5335 is a high-performance, low-jitter clock generator or buffer capable of synthesizing four independent user-programmable clock frequencies up to 350 MHz. The device supports free-run operation using an external 25 or 27 MHz crystal, or it can lock to an external clock for generating synchronous clocks. The output drivers support four differential clocks or eight single-ended clocks or a combination of both. The output drivers are configurable to support common signal formats, such as LVPECL, LVDS, HCSL, CML, CMOS, HSTL, and SSTL. Separate output supply pins allow supply voltages of 3.3, 2.5, 1.8, and 1.5 V to support the multi-format output driver. The core voltage supply accepts 3.3, 2.5, or 1.8 V and is independent from the output supplies. Using its two-stage synthesis architecture and patented high-resolution MultiSynth technology, the Si5335 can generate four independent frequencies from a single input frequency. In addition to clock generation, the inputs can bypass the synthesis stage enabling the Si5335 to be used as a high-performance clock buffer.

Spread spectrum* is available on each of the clock outputs for EMI-sensitive applications, such as PCI Express. The device includes an interrupt pin that monitors for both loss of PLL lock (LOL) and loss of input signal (LOS) conditions while configured in clock generator mode. In clock generator mode, the LOS pin is asserted whenever LOL or LOS is true. In clock buffer mode (i.e., when the PLL is bypassed), the LOS pin is asserted whenever the input clock is lost. The LOL condition does not apply in clock buffer mode.


*Note: See " Document Change List" on page 46 for more information.

3.2. MultiSynth Technology

Next-generation timing architectures require a wide range of frequencies which are often non-integer related. Traditional clock architectures address this by using a combination of single PLL ICs, 4-PLL ICs and discrete XOs, often at the expense of BOM complexity and power. The Si5335 uses patented MultiSynth technology to dramatically simplify timing architectures by integrating the frequency synthesis capability of 4 phase-locked loops (PLLs) in a single device, greatly minimizing size and power requirements versus traditional solutions. Based on a fractional-N PLL, the heart of the architecture is a low phase noise, high-frequency VCO. The VCO supplies a high frequency output clock to the MultiSynth block on each of the four independent output paths. Each MultiSynth operates as a high-speed fractional divider with Silicon Laboratories' proprietary phase error correction to divide down the VCO clock to the required output frequency with very low jitter.

The first stage of the MultiSynth architecture is a fractional-N divider which switches seamlessly between the two closest integer divider values to produce the exact output clock frequency with 0 ppm error. To eliminate phase error generated by this process, MultiSynth calculates the relative phase difference between the clock produced by the fractional-N divider and the desired output clock and dynamically adjusts the phase to match the ideal clock waveform. This novel approach makes it possible to generate any output clock frequency without sacrificing jitter performance. Based on this architecture, the output of each MultiSynth can produce any frequency from 1 to 350 MHz.

Figure 3. Silicon Labs' MultiSynth Technology

3.3. ClockBuilder Web-Customization Utility

ClockBuilder is a web-based utility available at www.silabs.com/ClockBuilder that allows hardware designers to tailor the Si5335's flexible clock architecture to meet any application-specific requirements and order custom clock samples. Through a simple point-and-click interface, users can specify any combination of input frequency and output frequencies and generate a custom part number for each application-specific configuration. There are no minimum order quantity restrictions.

ClockBuilder enables mass customization of clock generators. This allows a broader range of applications to take advantage of using application-specific pin controlled clocks, simplifying design while eliminating the firmware development required by traditional I²C-programmable clock generators.

Based on Silicon Labs' patented MultiSynth technology, the device PLL output frequency is constant and all clock output frequencies are synthesized by the four MultiSynth fractional dividers. All PLL parameters, including divider settings, VCO frequency, loop bandwidth, charge pump current, and phase margin are internally set by the device during the configuration process. This ensures optimized jitter performance and loop stability while simplifying design.

3.4. Input Configuration

The Si5335 input can be driven from either an external crystal or a reference clock. Reference selection is made when the device configuration is specified using the ClockBuilder[™] web-based utility available at www.silabs.com/ ClockBuilder.

3.4.1. Crystal Input

If the crystal input option is used, the Si5335 operates as a free-running clock generator. In this mode of operation the device requires a low-cost 25 or 27 MHz fundamental mode crystal connected across XA and XB as shown in Figure 4. Given the Si5335's frequency flexibility, the same 25 or 27 MHz crystal can be reused to generate any combination of output frequencies. Custom frequency crystals are not required. The Si5335 integrates the crystal load capacitors on-chip to reduce external component count. The crystal should be placed very close to the device to minimize stray capacitance. To ensure stable oscillation, the recommended crystal specifications provided in Tables 6 and 7 must be followed. See AN360 for additional details regarding crystal recommendations.

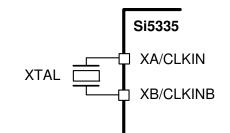


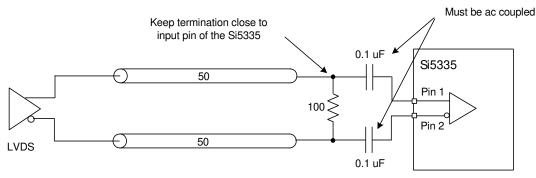
Figure 4. Connecting an XTAL to the Si5335

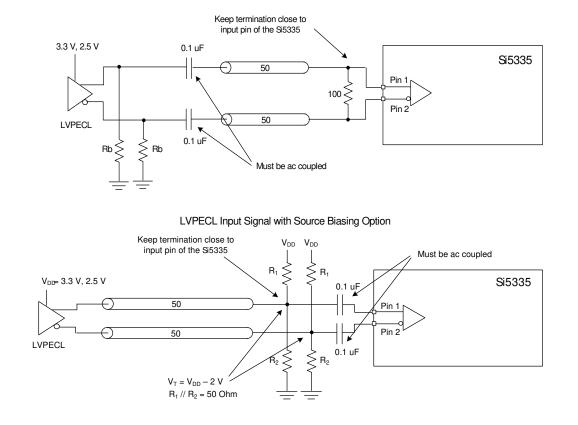
3.4.2. Differential Input Clocks

The multi-format differential clock inputs of the Si5335 will interface with today's most common differential signals, such as LVDS, LVPECL, CML, and HCSL. The differential inputs are internally self-biased *and must be ac-coupled externally with a 0.1 \muF capacitor.* The receiver will accept a signal with a voltage swing between 400 mV and 2.4 V_{PP} differential. Each half of the differential signal must not exceed 1.2 V_{PP} at the input to the Si5335 or else the 1.3 V dc voltage limit may be exceeded.

3.4.2.1. LVDS Inputs

When interfacing the Si5335 device to an LVDS signal, a 100 Ω termination is required at the input along with the required dc blocking capacitors as shown in Figure 5.




Figure 5. LVDS Input Signal

3.4.2.2. LVPECL Input Clocks

Recommended configurations for interfacing an LVPECL input signal to the Si5335 are shown in Figure 6. Typical values for the bias resistors (Rb) range between 120 and 200 Ω depending on the LVPECL driver. The 100 Ω resistor provides line termination. Because the receiver is internally self-biased, no additional external bias is required.

Another solution is to terminate the LVPECL driver with a Thevenin configuration as shown in Figure 6b. The

values for R₁ and R₂ are calculated to provide a 50 Ω termination to V_{DD}-2V. Given this, the recommended resistor values are R₁ = 127 Ω and R₂ = 82.5 Ω for V_{DD} = 3.3 V, and R₁ = 250 Ω and R₂ = 62.5 Ω for V_{DD} = 2.5 V.

LVPECL Input Signal with Load Biasing Option

Figure 6. Recommended Options for Interfacing to an LVPECL Input Signal

Since the differential receiver of the Si5335 is internally self biased, an LVPECL signal may not be dc-coupled to the device. Figure 7 shows some common LVPECL connections that should not be used because of the dc levels they present at the receiver's input.

Not Recommended

Figure 7. Common LVPECL Connections that May be Destructive to the Si5335 Input

3.4.2.3. CML Input Clocks

CML signals may be applied to the differential inputs of the Si5335. Since the Si5335 differential inputs are internally self-biased, a CML signal may not be dc-coupled to the device.

The recommended configurations for interfacing a CML input signal to the Si5335 are shown in Figure 8. The 100 Ω resistor provides line termination, and, since the receiver is internally-biased, no additional external biasing components are required.

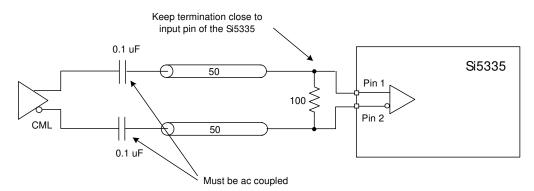


Figure 8. CML Input Signal

3.4.2.4. HCSL Input Clocks

A typical HCSL driver has an open source output, which requires an external series resistor and a resistor to ground. The values of these resistors depend on the driver but are typically equal to 33 Ω (Rs) and 50 Ω (Rt). Note that the HCSL driver in the Si5335 requires neither Rs nor Rt resistors. Other than two ac-coupling capacitors, no additional external components are necessary when interfacing an HCSL signal to the Si5335.

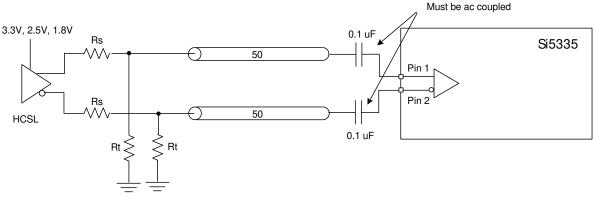
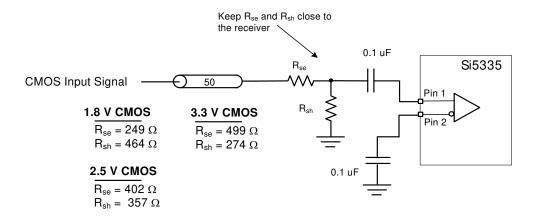



Figure 9. HCSL Input Signal to Si5335

3.4.3. Single-Ended CMOS Input Clocks

For synchronous timing applications, the Si5335 can lock to a 10 to 200 MHz CMOS reference clock. A typical interface circuit is shown in Figure 10. A series termination resistor may be required if the CMOS driver impedance does not match the trace impedance.

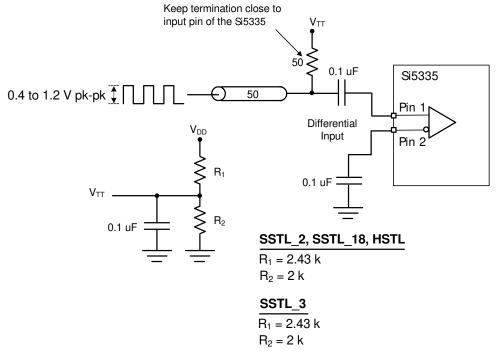


Figure 10. Interfacing CMOS Reference Clocks to the Si5335

3.4.4. Single-Ended SSTL and HSTL Input Clocks

HSTL and SSTL single-ended inputs can be input to the differential inputs, pins 1 and 2, of the Si5335 with the circuit shown in Figure 11.

Some drivers may require a series 25 Ω resistor. If the SSTL/HSTL input is being driven by another Si5335 device, the 25 Ω series resistor is not required as this is integrated on-chip. The maximum recommended input frequency in this case is 350 MHz.

Figure 11. Single-Ended SSTL/HSTL Input Clocks to the Si5335

3.4.5. Applying a Single-Ended Clock to the Differential Input Clock Pins

It is possible to interface any single-ended clock signal to the differential input pins (XA/CLKIN, XB/CLKINB). The recommended interface for a signal that requires a 50 Ω load is shown in Figure 12. On these inputs, it is important that the signal level be less than 1.2 V_{PP} SE and greater than 0.4 V_{PP} SE. The maximum recommended input frequency in this case is 350 MHz.

Figure 12. Single-Ended Input Signal with 50 Ω Termination

3.5. Input and Output Frequency Configuration

The Si5335 utilizes a single PLL-based architecture, four independent MultiSynth fractional output dividers, and a MultiSynth fractional feedback divider such that a single device provides the clock generation capability of 4 independent PLLs. Unlike competitive multi-PLL solutions, the Si5335 can generate four unique non-integer related output frequencies with 0 ppm frequency error for any combination of output frequencies. In addition, any combination of output frequencies can be generated from a single reference frequency without having to change the crystal or reference clock frequency between frequency configurations.

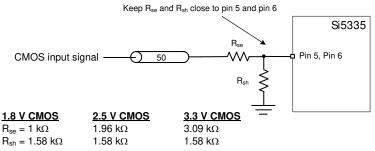
The Si5335 frequency configuration is set when the device configuration is specified using the ClockBuilder webbased utility available at www.silabs.com/ClockBuilder. Any combination of output frequencies ranging from 1 to 350 MHz can be configured on each of the device outputs. Up to three unique device configurations can be specified in a single device, enabling the Si5335 to replace 3 different clock generators or clock buffers.

3.6. Multi-Function Control Inputs

The Si5335 supports five user-defined input pins (pins 3, 5, 6, 12, 19) that are customizable to support the functions listed below. The pinout of each device is customized using the ClockBuilder utility. This enables the device to be custom tailored to a specific application. Each of the different functions is described in further detail below.

Pin Function	Description	Assignable Pin Name
OEB_all	Output Enable All.	P1, P2, P3, P5*, P6*
	All outputs enabled when low.	
OEB0	Output Enable Bank 0.	P1, P2, P3, P5*, P6*
	CLK0A/0B enabled when low.	
OEB1	Output Enable Bank 1.	P1, P2, P3, P5*, P6*
	CLK1A/1B enabled when low.	
OEB2	Output Enable Bank 2.	P1, P2, P3, P5*, P6*
	CLK2A/2B enabled when low.	
OEB3	Output Enable Bank 3.	P1, P2, P3, P5*, P6*
	CLK3A/3B enabled when low.	

Table 14. Multi-Function Control Inputs



FS0	Frequency Select.	P1
	Selects active device frequency plan from factory-configured	
	profiles. See "3.8. Frequency Select/Device Reset" for more information.	
FS1	Frequency Select.	P1 (for 2-plan devices)
	Selects active device frequency plan from factory-configured profiles. See "3.8. Frequency Select/Device Reset" for more information.	P2 (for 3-plan devices)
RESET	Reset.	P1, P2, P3
	Asserting this pin (driving high) is required to change	
	FS1,FS0 pin setting. Reset is not required if FS1,FS0 pins are unassigned.	
SSENB	Spread Spectrum Enable.	P1, P2, P3, P5*, P6*
	Enables PCI-compliant spread spectrum clocking on all 100	
	MHz clock outputs when low.	

Table 14. Multi-Function Control Inputs (Continued)

3.6.1. P5 and P6 Input Control

Control input signals to P5 and P6 cannot exceed 1.2 V. When these inputs are driven from CMOS sources, a resistive attenuator is required for pins 5 and 6, as shown in Figure 13.

3.7. Output Enable

Each of the device's four banks of clock outputs can be individually disabled using OEB0, OEB1, OEB2 and OEB3, respectively. Alternatively, all clock outputs can be disabled using the master output enable OEB_all. When a Si5335 clock output bank is disabled, the output disable state is determined by the configuration specified in the ClockBuilder web utility. When one or more banks of clock outputs are enabled or disabled, clock start and stop transitions are handled glitchlessly.

3.8. Frequency Select/Device Reset

The device frequency plan is customized using the ClockBuilder web utility. The Si5335 optionally supports up to three unique, pin-selectable configurations per device, enabling one device to replace up to three separate clock ICs. To select a particular frequency plan, set the FS pins as outlined below:

For custom Si5335 devices configured to support two frequency plans, the FS1 pin should be set as follows:

0	1
1	2

For custom Si5335 devices configured to support three frequency plans, the FS1 and FS0 pins should be set as follows:

FS1	FS0	Profile
0	0	Reserved
0	1	1
1	0	2
1	1	3

If a change is made to the FS pin settings, the device reset pin (RESET) must be held high for the minimum pulse width specified in Table 3 on page 5 to change the device configuration. The output clocks will be momentarily squelched until the device begins operation with the new frequency plan.

If the RESET pin is not selected in ClockBuilder as one of the five programmable pins, a power-on reset must be applied for an FS pin change to take effect.

3.9. Loss-of-Signal Alarm

The Si5335 supports a loss of signal (LOS) output indicator for monitoring the condition of the crystal/clock reference input. The LOS condition occurs when there is no input clock to the device or the PLL has lost lock (in clock generator mode). When an input clock is removed, the LOS pin will assert and the output clocks may drift up to 5% (in clock generator mode). When the input clock with an appropriate frequency is reapplied, the LOS pin will deassert. In clock buffer mode, LOS is driven high when the input clock is lost.

LOS Output State	Description
0	Input clock present and PLL is locked
1	Input clock not present and PLL is not locked

