Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # Si5350/51 20-QFN EVALUATION BOARD USER'S GUIDE #### **Description** The Si535x-20QFN-EVB is used for evaluating the Si5350/51 any-frequency, <125 MHz CMOS clock generator + VCXO. #### **Features** - Fully-powered from a single USB port - Onboard 27 MHz crystal for asynchronous operation - SMA and test point hook for interfacing to an external clock reference - Jumper-selectable VDD and VDDOx allows device to operate at 2.5 or 3.3 V - Voltage supply jumpers provide easy access for use with external supplies #### **Functional Block Diagram** ## 1. Functional Block Diagram Figure 1 highlights the main features of the EVB. The onboard MCU is responsible for programming the Si535x timing IC, measuring the device's current consumption reported in the ClockBuilder™ Desktop, managing power, and controlling status LEDs. VDD and VDDO jumpers allow the option of choosing between 2.5 V and 3.3 V or powering the device with external supplies (see "2. Jumpers" for details). I²C jumpers allow the Si535x to be disconnected from the I²C bus, allowing external control from another I²C master. The device can run in stand-alone asynchronous mode using the onboard 27 MHz XTAL (Y1), or it can be synchronized to an external clock using the CLKIN SMA connector or TP39/TP40. Figure 1. EVB Features ### 2. Jumpers The following jumpers are available on the evaluation board: - **VDD**—Connects the Si5350/51 pin to the VDD voltage regulator (normally installed). - VDD VOLT_SEL—Allows user to select a VDD voltage of 2.5 V or 3.3 V (default 3.3 V). - VDDOA—Connects the Si5350/51 pin to the VDDOA voltage regulator (normally installed). - VDDOA VOLT_SEL—Allows user to select a VDDOA voltage of 2.5 V or 3.3 V (default 3.3 V). - VDDOB—Connects the Si5350/51 pin to the VDDOB voltage regulator (normally installed). - VDDOB VOLT_SEL—Allows user to select a VDDOB voltage of 2.5 V or 3.3 V (default 3.3 V). - VDDOC—Connects the Si5350/51 pin to the VDDOC voltage regulator (normally installed). - VDDOC VOLT_SEL—Allows user to select a VDDOC voltage of 2.5 V or 3.3 V (default 3.3 V). - VDDOD—Connects the Si5350/51 pin to the VDDOD voltage regulator (normally installed). - VDDOD VOLT_SEL—Allows user to select a VDDOD voltage of 2.5 V or 3.3 V (default 3.3 V). - SCL—Connects the Si5350/51 SCL pin to the I²C bus from the MCU. Removing the jumper breaks the connection to the MCU and allows the user to feed in an external I²C signal to the device. - SDA—Connects the Si5350/51 SDA pin to the I²C bus from the MCU. Removing the jumper breaks the connection to the MCU and allows the user to feed in an external I²C signal to the device. - **EXP POWER**—Allows user to select between 5 V USB supply and 5 V external supply on J17. See Figure 1 for jumper locations. #### 3. Status LEDs There are three status LEDs on the evaluation board: - RDY (Green)—Indicates that the EVB is operating normally. This LED should always be on. - BUSY (Green)—Indicates that the on-board MCU is communicating with the device and/or the USB host. - INTR (Red)—Indicates device or EVB fault condition (also on when DUT hasn't been programmed). ## 4. Clock Inputs The EVB can operate in asynchronous mode using the onboard 27 MHz crystal, synchronous mode using an external CMOS clock source, or both modes if both PLLs in the device are utilized. An SMA connector is provided to interface an external clock source to CLKIN. Additionally, CLKIN can be applied using the test hooks TP39/TP49. ## 5. Clock Outputs Outputs must be measured with a high-impedance scope probe. A ground test point is provided 0.3" away from each clock output for ideal measurement. Most scope probes have a ground clip attached to the probe with a 3–6" length of cable. Use of these ground clips is not recommended since the ground reference is electrically far from the probe tip, especially for frequencies greater than a few Megahertz. Figure 2 shows the ideal measurement practice. Note that the probe ground closest to the probe tip is used as the reference. Clock voltage levels can be 2.5 or 3.3 V depending on the VDDOx VOLT_SEL jumper selection. Figure 2. Measuring Output #### 6. Software Guide The evaluation kit includes a software toolset called ClockBuilder Desktop - Si5350/51, consisting of two applications: - ClockBuilder Desktop—Used to set up and evaluate the part and to save custom register map files. - Register Programmer—Used to program individual registers on the evaluation board DUT. #### 6.1. Quick Start - 1. Install the ClockBuilder™ Desktop software and driver (assumes that Microsoft .NET Framework 1.1 is already installed). - 2. Connect a USB cable from the EVB to the PC. - 3. Leave the jumpers as installed from the factory, and launch the software by clicking on Start → Programs → Silicon Laboratories → ClockBuilder Desktop. Click on one of the shortcuts in the group. #### 6.2. ClockBuilder Desktop Software Installation The following sections describe how to install and use the software. There is a readme.txt file with the installation files as well as a software user guide installed with the software. #### 6.2.1. System Requirements - Microsoft Windows[®] 2000, XP, Vista, 7 - USB 2.0 - 3 MB of free hard drive space - 1024 x 768 screen resolution or greater - Microsoft .NET Framework 1.1 - USBXpress 3.1.1 driver **Note:** USBXpress 3.1.1 driver is provided and installed with the software. Newer or older versions of USBXpress available from other EVB kits or online have not been tested with this software. #### 6.2.2. Microsoft .NET Framework Installation The Microsoft .NET Framework is required before installing and running the software. Details and installation information about the .NET Framework are available via a shortcut in the NETFramework directory or at the following web site: www.microsoft.com/downloads/details.aspx?FamilyId=262D25E3-F589-4842-8157-034D1E7CF3A3&displaylang=en There are multiple versions of the .NET Framework available from Microsoft, and they can be installed side-by-side on the same computer. The software requires Version 1.1 but can run under other versions. Contact your system administrator for more details. #### 6.2.3. ClockBuilder Desktop Software Installation The ClockBuilder Desktop Software is installed from the ClockBuilderDesktopSwInstall.exe file. - 1. Double-click the install file to start the wizard. - 2. Follow the wizard instructions to complete the installation for both the software and the driver. Use the default installation location for best results. - 3. After the installation is complete, click on Start → Programs → Silicon Laboratories → ClockBuilder Desktop Software. Select one of the items in the menu including the User Guide to get more details on how to run the software. #### 6.2.4. ClockBuilder Desktop Software Uninstall Instructions Close all the programs and help files before running the uninstaller to ensure complete removal of the software. To uninstall the software, use the Add and Remove Programs utility in the Control Panel or click Start \rightarrow Programs \rightarrow Silicon Laboratories \rightarrow ClockBuilder Desktop \rightarrow Uninstaller Note: The driver software must be uninstalled separately. Si535x-20QFN-EVB Schematics Figure 3. Si5350/51 Main Figure 4. MCU and Programming Socket Power Supplies Figure 5. Power Supplies # 8. Bill of Materials Table 1. Si535x Bill of Materials | Item | Qty | Reference | Value | Manufacturer | Part Number | |------|-----|---|------------------------|-----------------------|------------------| | 1 | 5 | C2,C5,C7,C8,C9 | 0.1 μF Venkel | | C0402X5R100-104K | | 2 | 1 | C13 | 1 nF Venkel | | C0603X7R101-102K | | 3 | 17 | C17,C18,C20,
C21,C22,C23,C26,
C27,C31,C32,C33,
C35,C36,C37,C38,
C39,C40 | 0.1 μF | Venkel | C0402X7R100-104K | | 4 | 7 | C19,C24,C42,C45,
C48,C54,C56 | 4.7 μF | Venkel | C1206X7R100-475M | | 5 | 2 | C25,C30 | 1 μF | Venkel | C1206X7R250-105K | | 6 | 10 | C28,C29,C34,C41,
C43,C46,C53,C55,
C57,C65 | 10 μF | Kemet | B45196H5106M309 | | 7 | 7 | C44,C47,C49,C59,
C60,C61,C64 | 0.01 μF | Venkel | C0603X7R160-103M | | 8 | 7 | C50,C51,C52,C58,
C62,C63,C66 | 0.1 μF | Venkel | C0603X7R100-104M | | 9 | 1 | C69 | 0.1 μF | Venkel | C0603X7R100-104M | | 10 | 2 | D1,D3 | RED | Panasonic | LN1271RAL | | 11 | 3 | D2,D4,D5 | GREEN | Panasonic | LN1371G | | 12 | 2 | D6,D7 | MMBD3004S-7-F | Diodes Inc. | MMBD3004S-7-F | | 13 | 6 | JP1,JP2,JP3,JP4,
JP5,JP6 | HEADER 1x3 | Samtec | TSW-103-07-T-S | | 14 | 1 | J5 | SMA | Johnson
Components | 142-0701-801 | | 15 | 1 | J11 | HEADER 2x2 | Samtec | TSW-102-07-T-D | | 16 | 1 | J17 | CONN TRBLK 2 | Phoenix
Contact | 1729018 | | 17 | 1 | J18 | USB Type B | Тусо | 292304-1 | | 18 | 1 | J19 | 5X2 Shrouded
Header | Тусо | 5103309-1 | | 19 | 5 | J20,J21,J22,
J23,J24 | JUMPER | Samtec | TSW-102-07-T-S | Table 1. Si535x Bill of Materials (Continued) | Item | Qty | Reference | Value | Manufacturer | Part Number | |------|-----|--|---------------|-----------------|----------------------| | 20 | 11 | R3,R4,R5,R8,R9,
R23,R24,R52,R53,
R56,R59 | 0 | Venkel | CR0603-16W-000 | | 21 | 4 | R12,R13,R39,R40 | 2 kΩ | Venkel | CR0603-10W-2001F | | 22 | 2 | R64,R66 | 2 kΩ | Venkel | CR0603-10W-2001F | | 23 | 5 | R25,R26,R29,R30,
R31 | 100 kΩ | 100 kΩ Venkel | | | 24 | 8 | R36,R37,R38,R42,
R44,R49,R50,R55 | 1 kΩ | Venkel | CR0402-16W-102J | | 25 | 1 | R41 | 0 Ω | Venkel | CR0402-16W-000 | | 26 | 3 | R43,R46,R47 | 220 Ω | Venkel | CR0402-16W-221J | | 27 | 4 | R45,R48,R60,R61 | 1.02 kΩ | Venkel | TFCR0402-16W-E-1021B | | 28 | 8 | R51,R54,R57,R58,
R62,R63,R65,R68 | 0 Ω | Venkel | CR0603-16W-000 | | 29 | 1 | R67 | 412 Ω | Venkel | TFCR0402-16W-E-4120B | | 30 | 3 | R69,R70,R71 | 4.99 kΩ | Venkel | CR0603-16W-4991F | | 31 | 5 | R72,R73,R74,R90,
R91 | 20 Ω | Venkel | CR2512-1W-20R0D | | 32 | 7 | R75,R76,R78,R92,
R95,R97,R106 | 10 kΩ | Venkel | CR0603-16W-1002F | | 33 | 6 | R77,R79,R80,R93,
R94,R96 | 100 kΩ | Venkel | CR0603-10W-1003F | | 34 | 5 | R81,R84,R87,
R99,R102 | 5.90 kΩ | Venkel | CR0603-16W-5901F | | 35 | 5 | R82,R85,R88,
R100,R103 | 9.53 kΩ | Venkel | CR0603-16W-9531F | | 36 | 5 | R83,R86,R89,
R101,R104 | 4.42 kΩ | Venkel | CR0603-16W-4421F | | 37 | 1 | R98 | 6.98 kΩ | Venkel | CR0603-16W-6981F | | 38 | 2 | R105,R107 | 2.55 kΩ | Venkel | CR0603-16W-2551F | | 39 | 1 | R109 | 49.9 Ω | Venkel | CR0603-16W-49R9F | | 40 | 1 | S1 | SW PUSHBUTTON | Mountain Switch | 101-0161-EV | | 41 | 6 | TP2,TP3,TP6,
TP10,TP20,TP29 | BLACK | Kobiconn | 151-203-RC | Table 1. Si535x Bill of Materials (Continued) | Item | Qty | Reference | Value | Manufacturer | Part Number | |------|-----|---|----------------|----------------|-----------------| | 42 | 3 | TP4,TP5,TP11 | RED Kobiconn | | 151-207-RC | | 43 | 14 | TP7,TP8,TP9,
TP30,TP31,TP32,
TP33,TP34,TP35,
TP36,TP37,TP38,
TP39,TP52 | WHITE Kobiconn | | 151-201-RC | | 44 | 18 | TP12,TP13,TP14,
TP15,TP16,TP17,
TP18,TP19,TP21,
TP22,TP23,TP24,
TP25,TP26,TP27,
TP28,TP50,TP51 | RED | Kobiconn | 151-207-RC | | 45 | 10 | TP40,TP41,TP42,
TP43,TP44,TP45,
TP46,TP47,TP48,
TP49 | | 1-pin header | | | 46 | 1 | U2 | PCA9517D | NXP | PCA9517D | | 47 | 1 | U3 | ADG736BRMZ | ADI | ADG736BRMZ | | 48 | 1 | U4 | C8051F340 | SiLabs | C8051F340-GQ | | 49 | 1 | U5 | 2.5V | Analog Devices | AD1582BRT | | 50 | 2 | U6,U7 | ADG728 | Analog Devices | ADG728BRUZ | | 52 | 7 | U9,U10,U11,U12,
U13,U14,U15 | TPS76201 | TI | TPS76201DBV | | 53 | 1 | Y1 | 27 MHz | TXC | 7M-27.000MEEQ-T | # 9. Approved Crystals The crystals listed in Table 2 have been approved for use with the Si5350/51 family of devices. Note that this device has on-chip load capacitors that can be configured for 0, 6, 8, and 10 pF. For crystals with any other rated load capacitance, external capacitors may be required to achieve the best absolute accuracy. **Table 2. Approved Crystals** | Mfr | Part Number | Freq | Load
Capacitance | Initial
Accuracy | Stability
over
Temp | Web Site | |---------|----------------------------|--------|---------------------|---------------------|---------------------------|--| | Kyocera | CX3225SB25000D0FLJZ1 | 25 MHz | 8 pF | ±10 ppm | ±15 ppm | http://global.kyocera.com/
index.html | | | CX3225SB27000D0FLJZ1 | 27 MHz | о рі | | | | | Sunny | SP10115J6-25.000MHz | 25 MHz | 10 pF | ±15 ppm | ±30 ppm | http://www.sunny-usa.com/ | | | SP10115J6-27.000MHz | 27 MHz | 10 pF | | | | | NDK | NX3225GA-25.000M-STD-CRG-2 | 25 MHz | 0 nE | ±20 ppm | ±30 ppm | http://www.ndk.com/en/ | | | NX3225GA-27.000M-STD-CRG-2 | 27 MHz | 8 pF | | | | | Epson | FA-238 25.0000MB-K | 25 MHz | 10 pF | ±50 ppm | ±30 ppm | http://www.eea.epson.com/ | | TXC | 7M-27.000MEEQ | 27 MHz | 10 pF | ±10 ppm | ±10 ppm | http://www.txc.com.tw | Notes: #### **CONTACT INFORMATION** Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032 Please visit the Silicon Labs Technical Support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request. The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages. Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc. Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.