mail

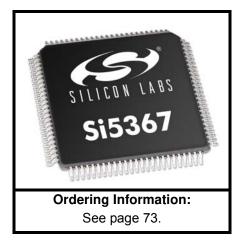
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

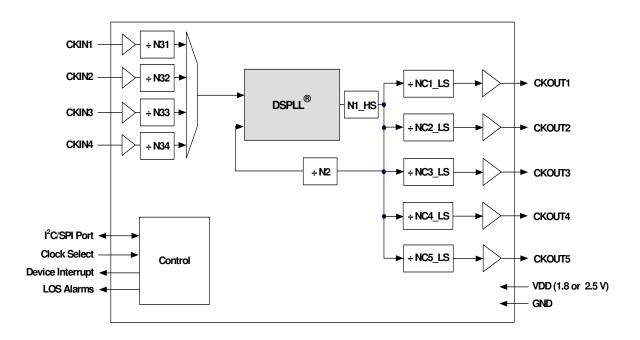


µP-PROGRAMMABLE PRECISION CLOCK MULTIPLIER

Features

- Not recommended for new designs. For alternatives, see the Si533x family of products.
- Generates any frequency from 2 kHz to 945 MHz and select frequencies to 1.4 GHz from an input frequency of 10 to 710 MHz I²C or SPI programmable
- Low jitter clock outputs w/jitter generation as low as 0.6 ps rms (50 kHz-80 MHz)
- Integrated loop filter with selectable loop bandwidth (150 kHz to 1.3 MHz)
- Four clock inputs with manual or automatically controlled switching

- Five clock outputs with selectable signal format (LVPECL, LVDS, CML, CMOS)
- Support for ITU G.709 FEC ratios (255/238, 255/237, 255/236)
- LOS alarm outputs
- settings
- On-chip voltage regulator for 1.8 V ±5%, 2.5 V ±10%, or 3.5 V ±10% operation
- Small size: 14 x 14 mm 100-pin TQFP
- Pb-free, RoHS compliant


Applications

- SONET/SDH OC-48/OC-192 STM- Wireless base stations 16/STM-64 line cards
- GbE/10GbE, 1/2/4/8/10GFC line cards
- ITU G.709 and custom FEC line cards
- Data converter clocking
- **xDSL**
- SONET/SDH + PDH clock synthesis
- Test and measurement

Description

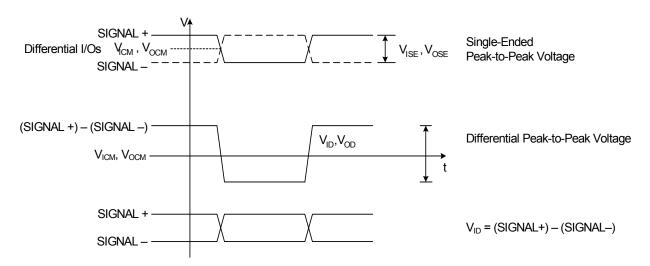
The Si5367 is a low jitter, precision clock multiplier for applications requiring clock multiplication without jitter attenuation. The Si5367 accepts four clock inputs ranging from 10 to 707 MHz and generates five frequency-multiplied clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz. The device provides virtually any frequency translation combination across this operating range. The outputs are divided down separately from a common source. The Si5367 input clock frequency and clock multiplication ratio are programmable through an I²C or SPI interface. The Si5367 is based on Silicon Laboratories' 3rdgeneration DSPLL® technology, which provides any-frequency synthesis in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The DSPLL loop bandwidth is digitally programmable, providing jitter performance optimization at the application level. Operating from a single 1.8, 2.5, or 3.5 V supply, the Si5367 is ideal for providing clock multiplication in high performance timing applications.

Functional Block Diagram

TABLE OF CONTENTS

Section

<u>Page</u>


1. Electrical Specifications
2. Typical Application Schematics15
3. Functional Description
3.1. Further Documentation
4. Register Map
5. Register Descriptions
6. Pin Descriptions: Si5367
7. Ordering Guide
8. Package Outline: 100-Pin TQFP74
9. PCB Land Pattern
10. Top Marking
10.1. Si5367 Top Marking
10.2. Top Marking Explanation
Document Change List
Contact Information

1. Electrical Specifications

Table 1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
Ambient Temperature	T _A		-40	25	85	С		
Supply Voltage during	V _{DD}	3.3 V Nominal	2.97	3.3	3.63	V		
Normal Operation		2.5 V Nominal	2.25	2.5	2.75	V		
		1.8 V Nominal	1.71	1.8	1.89	V		
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise stated.								

Figure 1. Differential Voltage Characteristics

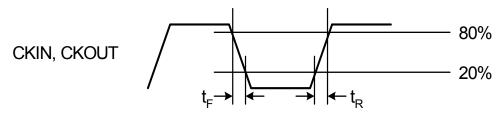


Figure 2. Rise/Fall Time Characteristics

Table 2. DC Characteristics

(V_{DD} = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, T_A = -40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply Current ^{1,2}	I _{DD}	LVPECL Format 622.08 MHz Out All CKOUTs Enabled	—	394	435	mA
		LVPECL Format 622.08 MHz Out 1 CKOUT Enabled	_	253	284	mA
		CMOS Format 19.44 MHz Out All CKOUTs Enabled	—	278	321	mA
		CMOS Format 19.44 MHz Out 1 CKOUT Enabled	_	229	261	mA
		Disable Mode	_	165	_	mA
CKINn Input Pins ³						
Input Common Mode	V _{ICM}	1.8 V ± 5%	0.9	_	1.4	V
Voltage (Input Thresh- old Voltage)		2.5 V ± 10%	1	—	1.7	V
0,		3.3 V ± 10%	1.1	—	1.95	V
Input Resistance	CKN _{RIN}	Single-ended	20	40	60	kΩ
Single-Ended Input Voltage Swing	V _{ISE}	f _{CKIN} < 212.5 MHz See Figure 1.	0.2	—	_	V _{PP}
(See Absolute Specs)		f _{CKIN} > 212.5 MHz See Figure 1.	0.25	—	_	V _{PP}
Differential Input Voltage Swing	V _{ID}	f _{CKIN} < 212.5 MHz See Figure 1.	0.2	—		V _{PP}
(See Absolute Specs)		fCKIN > 212.5 MHz See Figure 1.	0.25	—	_	V _{PP}

Output Clocks (CKOUTn)^{4,5}

Notes:

- 1. Current draw is independent of supply voltage.
- 2. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.
- **3.** No under- or overshoot is allowed.
- 4. LVPECL outputs require nominal VDD \geq 2.5 V.
- 5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
- 6. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details.

Table 2. DC Characteristics (Continued)

 $(V_{DD} = 1.8 \pm 5\%, 2.5 \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, \text{ T}_{A} = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Common Mode	CKO _{VCM}	LVPECL 100 Ω load line-to-line	V _{DD} –1.42	_	V _{DD} –1.25	V
Differential Output Swing	CKO _{VD}	LVPECL 100 Ω load line- to-line	1.1	—	1.9	V _{PP}
Single Ended Output Swing	CKO _{VSE}	LVPECL 100 Ω load line- to-line	0.5	—	0.93	V _{PP}
Differential Output Voltage	CKO _{VD}	CML 100 Ω load line-to- line	350	425	500	mV _{PP}
Common Mode Output Voltage	CKO _{VCM}	CML 100 Ω load line-to- line	—	V _{DD} -0.36	_	V
Differential Output Voltage	CKO _{VD}	LVDS 100 Ω load line-to-line	500	700	900	mV _{PP}
		Low Swing LVDS 100 Ω load line-to-line	350	425	500	mV _{PP}
Common Mode Output Voltage	CKO _{VCM}	LVDS 100 Ω load line-to- line	1.125	1.2	1.275	V
Differential Output Resistance	CKO _{RD}	CML, LVPECL, LVDS	—	200		Ω
Output Voltage Low	CKO _{VOLLH}	CMOS	—	_	0.4	V
Output Voltage High	CKO _{VOHLH}	V _{DD} = 1.71 V CMOS	0.8 x V _{DD}	—		V

Notes:

1. Current draw is independent of supply voltage.

2. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.

3. No under- or overshoot is allowed.

4. LVPECL outputs require nominal VDD \ge 2.5 V.

5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.

6. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details.

Table 2. DC Characteristics (Continued)

 $(V_{DD} = 1.8 \pm 5\%, 2.5 \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, \text{ T}_{A} = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output Drive Current (CMOS driving into	CKO _{IO}	ICMOS[1:0] = 11 V _{DD} = 1.8 V	_	7.5	—	mA
CKO_{VOL} for output low or CKO_{VOH} for output high. CKOUT+ and		ICMOS[1:0] = 10 V _{DD} = 1.8 V	—	5.5	—	mA
CKOUT– shorted externally)		ICMOS[1:0] = 01 V _{DD} = 1.8 V	—	3.5	—	mA
		ICMOS[1:0] = 00 V _{DD} = 1.8 V	_	1.75	_	mA
		ICMOS[1:0] = 11 V _{DD} = 3.3 V	-	32	_	mA
		ICMOS[1:0] = 10 V _{DD} = 3.3 V	-	24	_	mA
		ICMOS[1:0] = 01 V _{DD} = 3.3 V	_	16	_	mA
		ICMOS[1:0] = 00 V _{DD} = 3.3 V	_	8	_	mA
2-Level LVCMOS Inpu	t Pins		·			
Input Voltage Low	V _{IL}	V _{DD} = 1.71 V	_		0.5	V
		V _{DD} = 2.25 V	_	—	0.7	V
		V _{DD} = 2.97 V	_	—	0.8	V
Input Voltage High	V _{IH}	V _{DD} = 1.89 V	1.4	—	_	V
		V _{DD} = 2.25 V	1.8	—		V
		V _{DD} = 3.63 V	2.5	_	_	V

Notes:

1. Current draw is independent of supply voltage.

- 2. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.
- 3. No under- or overshoot is allowed.
- 4. LVPECL outputs require nominal VDD \ge 2.5 V.
- 5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
- 6. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details.

Table 2. DC Characteristics (Continued)

 $(V_{DD} = 1.8 \pm 5\%, 2.5 \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, \text{ T}_{A} = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
3-Level Input Pins ⁶						
Input Voltage Low	V _{ILL}		_	_	0.15 x V _{DD}	V
Input Voltage Mid	V _{IMM}		0.45 x V _{DD}		0.55 x V _{DD}	V
Input Voltage High	V _{IHH}		0.85 x V _{DD}	_	_	V
Input Low Current	I _{ILL}	See Note 6	-20	_	_	μA
Input Mid Current	I _{IMM}	See Note 6	-2		+2	μA
Input High Current	I _{IHH}	See Note 6	_	_	20	μA
LVCMOS Output Pins						
Output Voltage Low	V _{OL}	IO = 2 mA V _{DD} = 1.71 V	—		0.4	V
Output Voltage Low		IO = 2 mA V _{DD} = 2.97 V	—	_	0.4	V
Output Voltage High	V _{OH}	IO = –2 mA V _{DD} = 1.71 V	V _{DD} – 0.4		_	V
Output Voltage High		IO = -2 mA V _{DD} = 2.97 V	V _{DD} – 0.4	_	_	V
Disabled Leakage Current	I _{OZ}	RSTb = 0	-100	_	100	μA

Notes:

1. Current draw is independent of supply voltage.

2. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.

3. No under- or overshoot is allowed.

4. LVPECL outputs require nominal VDD \ge 2.5 V.

5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.

6. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details.

Table 3. AC Characteristics

(V_{DD} = 1.8 \pm 5%, 2.5 $\pm 10\%,$ or 3.3 V $\pm 10\%,$ T_A = -40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
CKINn Input Pins	1					1
Input Frequency	CKN _F		10	_	710	MHz
Input Duty Cycle (Minimum Pulse Width)	CKN _{DC}	Whichever is smaller (i.e., the 40% / 60% limitation applies only to high frequency clocks)	40	_	60	%
			2	—	—	ns
Input Capacitance	CKN _{CIN}		_		3	pF
Input Rise/Fall Time	CKN _{TRF}	20–80% See Figure 2	_	_	11	ns
CKOUTn Output Pins		· · ·				
(See ordering section f	or speed grad	e vs frequency limits)				
Output Frequency (Output not config-	CKO _F	N1 ≥ 6	0.002	_	945	MHz
ured for CMOS or Disabled)		N1 = 5	970	—	1134	MHz
		N1 = 4	1.213		1.4	GHz
Maximum Output Frequency in CMOS Format	СКО _F			_	212.5	MHz
Output Rise/Fall (20–80 %) @ 622.08 MHz output	CKO _{TRF}	Output not configured for CMOS or Disabled See Figure 2	_	230	350	ps
Output Rise/Fall (20–80%) @ 212.5 MHz output	CKO _{TRF}	CMOS Output $V_{DD} = 1.71$ $C_{LOAD} = 5 \text{ pF}$	_	_	8	ns
Output Rise/Fall (20–80%) @ 212.5 MHz output	CKO _{TRF}	CMOS Output V_{DD} = 2.97 C_{LOAD} = 5 pF	_	_	2	ns
Output Duty Cycle Uncertainty @ 622.08 MHz	СКО _{DC}	100 Ω Load Line-to-Line Measured at 50% Point (Not for CMOS)	_	-	+/-40	ps

Table 3. AC Characteristics (Continued) $(V_{DD} = 1.8 \pm 5\%, 2.5 \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, \text{ T}_{A} = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
LVCMOS Input Pins				1		
Minimum Reset Pulse Width	t _{RSTMN}		1	—		μs
Reset to Microproces- sor Access Ready	t _{READY}		_	—	10	ms
Input Capacitance	C _{in}		—	_	3	pF
LVCMOS Output Pins				1	l	
Rise/Fall Times	t _{RF}	C _{LOAD} = 20 pF See Figure 2	_	25	_	ns
LOSn Trigger Window	LOS _{TRIG}	From last CKINn ↑ to ↓ Internal detection of LOSn N3 ≠ 1		_	4.5 x N3	T _{CKIN}
Time to Clear LOL after LOS Cleared	t _{CLRLOL}	↓LOS to ↓LOL Fold = Fnew Stable Xa/XB reference		10	_	ms
Device Skew					L	
Output Clock Skew	t _{skew}	<pre>↑ of CKOUTn to ↑ of CKOUT_m, CKOUTn and CKOUT_m at same frequency and signal format <u>PHASEOFFSET</u> = 0 <u>CKOUT_ALWAYS_ON</u> = 1 <u>SQ_ICAL</u> = 1</pre>			100	ps
Phase Change due to Temperature Variation	t _{TEMP}	Max phase changes from -40 to +85 °C		300	500	ps

Table 3. AC Characteristics (Continued) $(V_{DD} = 1.8 \pm 5\%, 2.5 \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, \text{ T}_{A} = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
PLL Performance						•
(fin = fout = 622.08 MH	lz; BW = 120	Hz; LVPECL)				
Lock Time	t _{LOCKMP}	Start of ICAL to \downarrow of LOL	—	35	1200	ms
Closed Loop Jitter Peaking	J _{PK}		_	0.05	0.1	dB
Jitter Tolerance	J _{TOL}	Jitter Frequency ≥ Loop Bandwidth	5000/BW		—	ns pk-pk
Phase Noise fout = 622.08 MHz		1 kHz Offset	—	-90	—	dBc/Hz
	CKO	10 kHz Offset	—	-113	—	dBc/Hz
	СКО _{РN}	100 kHz Offset	—	-118	—	dBc/Hz
		1 MHz Offset	—	-132	_	dBc/Hz
Subharmonic Noise	SP _{SUBH}	Phase Noise @ 100 kHz Offset	—	-88	_	dBc
Spurious Noise	SP _{SPUR}	Max spur @ n x F3 (n ≥ 1, n x F3 < 100 MHz)	_	-93	—	dBc

Table 4. Microprocessor Control (V_{DD} = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, T_A = -40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit			
I ² C Bus Lines (SDA, S	² C Bus Lines (SDA, SCL)								
Input Voltage Low	VIL _{I2C}		—		0.25 x V _{DD}	V			
Input Voltage High	VIH _{I2C}		0.7 x V _{DD}	_	V _{DD}	V			
Hysteresis of Schmitt trigger inputs	VHYS _{I2C}	V _{DD} = 1.8V	0.1 x V _{DD}	_	—	V			
		V _{DD} = 2.5 or 3.3 V	0.05 x V _{DD}	_	—	V			
Output Voltage Low	VOL _{I2C}	V _{DD} = 1.8 V IO = 3 mA	—	_	0.2 x V _{DD}	V			
		V _{DD} = 2.5 or 3.3 V IO = 3 mA			0.4	V			

Table 4. Microprocessor Control (Continued) $(V_{DD} = 1.8 \pm 5\%, 2.5 \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit			
SPI Specifications	SPI Specifications								
Duty Cycle, SCLK	t _{DC}	SCLK = 10 MHz	40	—	60	%			
Cycle Time, SCLK	t _c		100	-	_	ns			
Rise Time, SCLK	t _r	20–80%	_	_	25	ns			
Fall Time, SCLK	t _f	20-80%	_	_	25	ns			
Low Time, SCLK	t _{lsc}	20–20%	30	—		ns			
High Time, SCLK	t _{hsc}	80–80%	30	—		ns			
Delay Time, SCLK Fall to SDO Active	t _{d1}		_		25	ns			
Delay Time, SCLK Fall to SDO Transition	t _{d2}		_	—	25	ns			
Delay Time, SS Rise to SDO Tri-state	t _{d3}		_	—	25	ns			
Setup Time, SS to SCLK Fall	t _{su1}		25	_	_	ns			
Hold Time, SS to SCLK Rise	t _{h1}		20	_		ns			
Setup Time, SDI to SCLK Rise	t _{su2}		25	—		ns			
Hold Time, SDI to SCLK Rise	t _{h2}		20	_		ns			
Delay Time between Slave Selects	t _{cs}		25	—		ns			

Table 5. Jitter Generation

Parameter	Symbol	Test Condition [*]	Min	Тур	Max	Unit
		Measurement Filter				
Jitter Gen OC-192	JGEN	4–80 MHz	—	.23	—	ps _{rms}
		0.05–80 MHz	_	.47	_	ps _{rms}
Jitter Gen OC-48	JGEN	0.12–20 MHz	—	.48	_	ps _{rms}
 Clock inp Clock ou PLL band 	JT = 622.08 MHz out: LVPECL tput: LVPECL dwidth: 877 kHz MHz 3rd OT crysta 5 V	l used as XA/XB input				

Table 6. Thermal Characteristics

(V_{DD} = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, T_A = -40 to 85 °C)

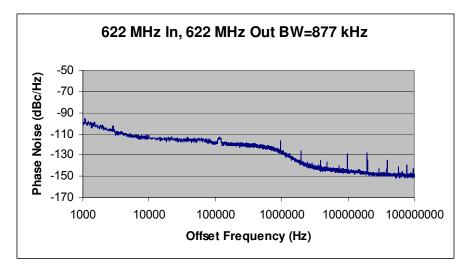
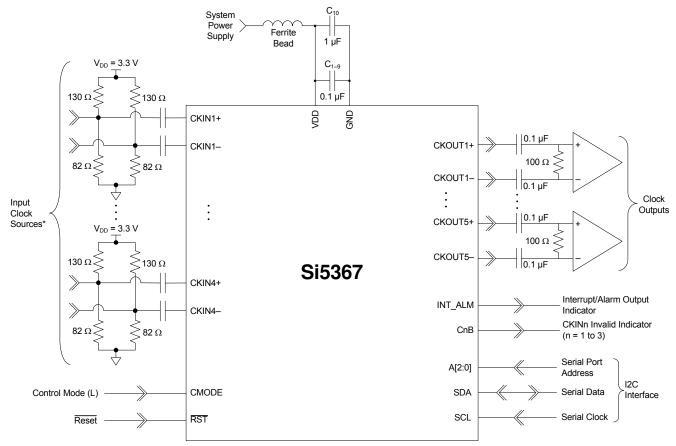

Parameter	Symbol	Test Condition	Value	Unit
Thermal Resistance Junction to Ambient	θ_{JA}	Still Air	40	C°/W

Table 7. Absolute Maximum Ratings

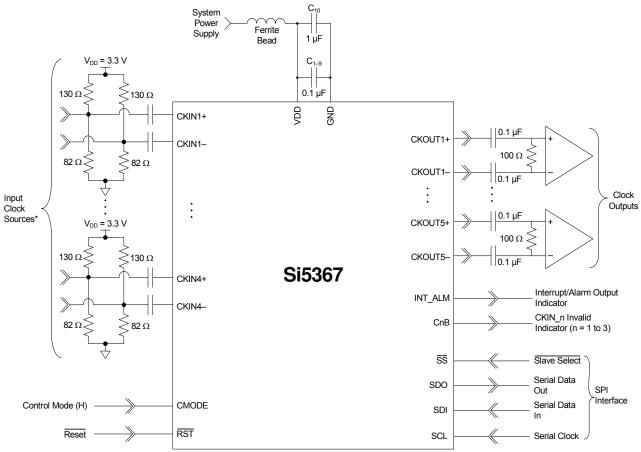
Parameter	Symbol	Value	Unit
DC Supply Voltage	V _{DD}	-0.5 to 3.8	V
LVCMOS Input Voltage	V _{DIG}	–0.3 to (V _{DD} + 0.3)	V
CKINn Voltage Level Limits	CKN _{VIN}	0 to V _{DD}	V
XA/XB Voltage Level Limits	XA _{VIN}	0 to 1.2	V
Operating Junction Temperature	T _{JCT}	–55 to 150	С
Storage Temperature Range	T _{STG}	–55 to 150	С
ESD HBM Tolerance (100 pF, 1.5 kΩ); All pins except CKIN+/CKIN–		2	kV
ESD MM Tolerance; All pins except CKIN+/CKIN–		700	V
ESD HBM Tolerance (100 pF, 1.5 kΩ); CKIN+/CKIN–		750	V
ESD MM Tolerance; CKIN+/CKIN–		100	V
Latch-Up Tolerance		JESD78 Compli	ant

rating conditions for extended periods of time may affect device reliability.


Figure 3.	Typical	Phase	Noise	Plot
-----------	---------	-------	-------	------

Jitter Bandwidth	RMS Jitter (fs)
OC-48, 12 kHz to 20 MHz	374
OC-192, 20 kHz to 80 MHz	388
OC-192, 4 MHz to 80 MHz	181
OC-192, 50 kHz to 80 MHz	377
Broadband, 800 Hz to 80 MHz	420

Table 8. Typical RMS Jitter Values


2. Typical Application Schematics

*Note: Assumes differential LVPECL termination (3.3 V) on clock inputs.

Figure 4. Si5367 Typical Application Circuit (I²C Control Mode)

*Note: Assumes differential LVPECL termination (3.3 V) on clock inputs.

Figure 5. Si5367 Typical Application Circuit (SPI Control Mode)

3. Functional Description

The Si5367 is a low jitter, precision clock multiplier for applications requiring clock multiplication without jitter attenuation. The Si5367 accepts four clock inputs ranging from 10 to 707 MHz and generates five frequency-multiplied clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz. The device provides virtually any frequency translation combination across this operating range. Independent dividers are available for every input clock and output clock, so the Si5367 can accept input clocks at different frequencies and it can generate output clocks at different frequencies. The Si5367 input clock frequency and clock multiplication ratio are programmable through an I²C or SPI interface. Silicon Laboratories offers a PC-based software utility, DSPLLsim, that can be used to determine the optimum PLL divider settings for a input frequency/clock multiplication ratio given combination that minimizes phase noise and power consumption. This utility can be downloaded from http://www.silabs.com/timing (click on Documentation).

The Si5367 is based on Silicon Laboratories' 3rdgeneration DSPLL[®] technology, which provides anyfrequency synthesis in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The Si5367 PLL loop bandwidth is digitally programmable and supports a range from 150 kHz to 1.3 MHz. The DSPLL*sim* software utility can be used to calculate valid loop bandwidth settings for a given input clock frequency/clock multiplication ratio.

The Si5367 monitors all input clocks for loss-of-signal and provides a LOS alarm when it detects missing pulses on its inputs.

In the case when the input clocks enter alarm conditions, the PLL will freeze the DCO output frequency near its last value to maintain operation with an internal state close to the last valid operating state.

The Si5367 has five differential clock outputs. The signal format of the clock outputs is programmable to support LVPECL, LVDS, CML, or CMOS loads. If not required, unused clock outputs can be powered down to minimize power consumption. In addition, the phase of each output clock may be adjusted in relation to the other output clocks. The resolution varies from 800 ps to 2.2 ns depending on the PLL divider settings. Consult the DSPLL*sim* configuration software to determine the phase offset resolution for a given input clock/clock multiplication ratio combination. For system-level debugging, a bypass mode is available which drives the output clock directly from the input clock, bypassing the internal DSPLL. The device is powered by a single 1.8 or 2.5 V supply.

Consult the Silicon Laboratories Any-Frequency Precision Clock Family Reference Manual (FRM) for detailed information about the Si5367. Additional design support is available from Silicon Laboratories through your distributor.

Silicon Laboratories has developed a PC-based software utility called DSPLL*sim* to simplify device configuration, including frequency planning and loop bandwidth selection. The FRM and this utility can be downloaded from http://www.silabs.com/timing; click on Documentation.

4. Register Map

All register bits that are not defined in this map should always be written with the specified Reset Values. The writing to these bits of values other than the specified Reset Values may result in undefined device behavior. Registers not listed, such as Register 64, should never be written to.

Register	D7	D6	D5	D4	D3	D2	D1	D0
0			CKOUT_ALWAYS_ON				BYPASS_REG	
1	CK_PRIOR4 [1:0] CK_PRIOR3 [1:0]		CK_PRIC	CK_PRIOR2 [1:0] CK_PRIOR		OR1 [1:0]		
2			BWSEL_REG [3:0]					
3	CKSEL_	_REG [1:0]		SQ_ICAL				
4	AUTOSEL	REG [1:0]						
5	ICMC	DS [1:0]	S	FOUT2_REG [2:0]			SFOUT1_REG [2:0]	
6			S	FOUT4_REG [2:0]			SFOUT3_REG [2:0]	
7			S	FOUT5_REG [2:0]			FOSREFSEL [2:0]	
8	HLOG	6_4 [1:0]	HLOG_3	3 [1:0]	HLOG	_2 [1:0]	HLOG_	_1 [1:0]
9							HLOG_	_5 [1:0]
10			DSBL5_REG		DSBL4_REG	DSBL3_REG	DSBL2_REG	DSBL1_REG
11					PD_CK4	PD_CK3	PD_CK2	PD_CK1
19	FOS_EN	F	OS_THR [1:0]	VALTIN	NE [1:0]			
20				CK3_BAD_PIN	CK2_BAD_PIN	CK1_BAD_PIN		INT_PIN
21				CK4_ACTV_PIN	CK3_ACTV_PIN	CK2_ACTV_PIN	CK1_ACTV_PIN	CKSEL_PIN
22					CK_ACTV_POL	CK_BAD_POL		INT_POL
23				LOS4_MSK	LOS3_MSK	LOS2_MSK	LOS1_MSK	
24				FOS4_MSK	FOS3_MSK	FOS2_MSK	FOS1_MSK	
25		N1_HS	[2:0]			NC1_LS	S [19:16]	
26				NC1	I_LS [15:8]			
27		1		NC	1_LS [7:0]			
28						NC2_LS	6 [19:16]	
29				NC2	2_LS [15:8]			
30		1	1	NC	2_LS [7:0]			
31						NC3_LS	S [19:16]	
32				NC3	3_LS [15:8]			
33		T		NC	3_LS [7:0]			
34						NC4_LS	S [19:16]	
35				NC4	4_LS [15:8]			
36		1	T	NC	4_LS [7:0]			
37						NC5_LS	S [19:16]	
38				NC5	5_LS [15:8]			

Si5367

Register	D7	D6	D5	D4	D3	D2	D1	D0		
39		L I		NC	5_LS [7:0]			L		
40						N2_LS	[19:16]			
41		II		N2	LS [15:8]					
42		N2_LS [7:0]								
43							N31_[18:16]			
44				N	31_[15:8]					
45				Ν	l31_ [7:0]					
46							N32_[18:16]			
47		L I		N	31_ [15:8]	L				
48				Ν	132_[7:0]					
49		N33_[18:16]								
50		L I		N	33_[15:8]					
51				Ν	133_[7:0]					
52		N34_[18:16]								
53		·		N	34_[15:8]					
54				١	134_[7:0]					
55			(CLKIN2RATE_[2:0]			CLKIN1RATE[2:0]			
56			(CLKIN4RATE_[2:0]		CLKIN3RATE[2:0]				
128					CK4_ACTV_REG	CK3_ACTV_REG	CK2_ACTV_REG	CK1_ACTV_REG		
129				LOS4_INT	LOS3_INT	LOS2_INT	LOS1_INT			
130				FOS4_INT	FOS3_INT	FOS2_INT	FOS1_INT			
131				LOS4_FLG	LOS3_FLG	LOS2_FLG	LOS1_FLG			
132			FOS4_FLG	FOS3_FLG	FOS2_FLG	FOS1_FLG				
134		L I		PARTN	IUM_RO [11:4]					
135		PA	RTNUM_RO [3:0]			REVID_	RO [3:0]			
136	RST_REG	ICAL								
138					LOS4_EN [1:1]	LOS3_EN [1:1]	LOS2_EN [1:1]	LOS1_EN [1:1]		
139	LOS4_EN [0:0]	LOS3_EN [0:0]	LOS2_EN [0:0]	LOS1_EN [0:0]	FOS4_EN	FOS3_EN	FOS2_EN	FOS1_EN		
140				INDEPENI	DENTSKEW1 [7:0]					
141				INDEPENI	DENTSKEW2 [7:0]					
142				INDEPENI	DENTSKEW3 [7:0]					
143				INDEPENI	DENTSKEW4 [7:0]					
144				INDEPENI	DENTSKEW5 [7:0]					

5. Register Descriptions

Register 0.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			CKOUT_ALWAYS_ON				BYPASS_REG	
Туре	R	R	R/W	R	R	R	R/W	R

Reset value = 0001 0100

Bit	Name	Function
7:6	Reserved	
5	CKOUT_ALWAYS_ON	 CKOUT Always On. This will bypass the SQ_ICAL function. Output will be available even if SQ_I-CAL is on and ICAL is not complete or successful. See Table 9. 0: Squelch output until part is calibrated (ICAL). 1: Provide an output. Note: The frequency may be significantly off until the part is calibrated.
4:2	Reserved	
1	BYPASS_REG	 Bypass Register. This bit enables or disables the PLL bypass mode. Use is only valid when the part is in digital hold or before the first ICAL. 0: Normal operation 1: Bypass mode. Selected input clock is connected to CKOUT buffers, bypass-ing PLL. Bypass mode does not support CMOS clock outputs.
0	Reserved	

Register 1.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	CK_PRIOR4 [1:0]		CK_PRIOR3 [1:0]		CK_PRIOR2 [1:0]		CK_PRIOR1 [1:0]	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Reset value = 1110 0100

Bit	Name	Function
7:6	CK_PRIOR4 [1:0]	Selects which of the input clocks will be 4th priority in the autoselection state machine. 00: CKIN1 is 4th priority 01: CKIN2 is 4th priority 10: CKIN3 is 4th priority 11: CKIN4 is 4th priority
5:4	CK_PRIOR3 [1:0]	Selects which of the input clocks will be 3rd priority in the autoselection state machine. 00: CKIN1 is 3rd priority 01: CKIN2 is 3rd priority 10: CKIN3 is 3rd priority 11: CKIN4 is 3rd priority
3:2	CK_PRIOR2 [1:0]	 CK_PRIOR 2. Selects which of the input clocks will be 2nd priority in the autoselection state machine. 00: CKIN1 is 2nd priority 01: CKIN2 is 2nd priority 10: CKIN3 is 2nd priority 11: CKIN4 is 2nd priority
1:0	CK_PRIOR1 [1:0]	CK_PRIOR 1. Selects which of the input clocks will be 1st priority in the autoselection state machine. 00: CKIN1 is 1st priority 01: CKIN2 is 1st priority 10: CKIN3 is 1st priority 11: CKIN4 is 1st priority

Register 2.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		BWSEL_	REG [3:0]					
Туре		R/	W		R	R	R	R

Reset value = 0100 0010

Bit	Name	Function
7:4	BWSEL_REG [3:0]	BWSEL_REG. Selects nominal f3dB bandwidth for PLL. See the DSPLLsim for settings. After BWSEL_REG is written with a new value, an ICAL is required for the change to take effect.
3:0	Reserved	

Register 3.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	CKSEL_I	REG [1:0]		SQ_ICAL				
Туре	R/W		R	R/W	R	R	R	R

Reset value = 0000 0101

Bit	Name	Function
7:6	CKSEL_REG [1:0]	CKSEL_REG. If the device is operating in manual register-based clock selection mode (AUTOSEL_REG = 00), and CKSEL_PIN = 0, then these bits select which input clock will be the active input clock. If CKSEL_PIN = 1, the CKSEL[1:0] input pins continue to control clock selection and CKSEL_REG is of no consequence. 00: CKIN_1 selected. 01: CKIN_2 selected. 10: CKIN_3 selected. 11: CKIN_4 selected.
5	Reserved	
4	SQ_ICAL	 SQ_ICAL. This bit determines if the output clocks will remain enabled or be squelched (disabled) during an internal calibration. See Table 9. 0: Output clocks enabled during ICAL. 1: Output clocks disabled during ICAL.
3:0	Reserved	

Register 4.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	AUTOSEL	_REG [1:0]						
Туре	R/W		R	R	R	R	R	R

Reset value = 0001 0010

Bit	Name	Function
7:6	AUTOSEL_REG [1:0]	AUTOSEL_REG [1:0]. Selects method of input clock selection to be used. 00: Manual (either register or pin controlled. See CKSEL_PIN). 01: Automatic Non-Revertive 10: Automatic Revertive 11: Reserved
5:0	Reserved	

Register 5.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	ICMOS [1:0]		SFOUT2_REG [2:0]			SFOUT1_REG [2:0]		
Туре	R/W		R/W			R/W		

Reset value = 1110 1101

Bit	Name	Function
7:6	ICMOS [1:0]	ICMOS [1:0]. When the output buffer is set to CMOS mode, these bits determine the output buffer drive strength. The first number below refers to 3.3 V operation; the second to 1.8 V operation. These values assume CKOUT+ is tied to CKOUT 00: 8 mA/2 mA 01: 16 mA/4 mA
		10: 24 mA/6 mA
		11: 32 mA (3.3 V operation)/8 mA (1.8 V operation)
5:3		SFOUT2_REG [2:0]. Controls output signal format and disable for CKOUT2 output buffer. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. 000: Reserved 001: Disable 010: CMOS (Bypass mode not supported.) 011: Low swing LVDS 100: Reserved 101: LVPECL 110: CML 111: LVDS
2:0	SFOUT1_REG [2:0]	SFOUT1_REG [2:0]. Controls output signal format and disable for CKOUT1 output buffer. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. 000: Reserved 001: Disable 010: CMOS (Bypass mode not supported.) 011: Low swing LVDS 100: Reserved 101: LVPECL 110: CML 111: LVDS

Register 6.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			SFOUT4_REG [2:0]			SFOUT3_REG [2:0]		
Туре	R	R	R/W				R/W	

Reset value = 0010 1100

Bit	Name	Function
7:6	Reserved	
5:3	SFOUT4_REG [2:0]	SFOUT4_REG [2:0]. Controls output signal format and disable for CKOUT4 output buffer. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.
		000: Reserved 001: Disable 010: CMOS (Bypass mode not supported.) 011: Low swing LVDS 100: Reserved 101: LVPECL 110: CML 111: LVDS
2:0	SFOUT3_REG [2:0]	SFOUT3_REG [2:0]. Controls output signal format and disable for CKOUT3 output buffer. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. 000: Reserved 001: Disable 010: CMOS (Bypass mode not supported.) 011: Low swing LVDS 100: Reserved 101: LVPECL 110: CML 111: LVDS

