mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Si5391 Data Sheet

Ultra Low-Jitter, 12-Output, Any-Frequency, Any-Output Clock Generator

The any-frequency, any-output Si5391 clock generators combine a wide-band PLL with proprietary MultiSynth[™] fractional synthesizer technology to offer a versatile and high performance clock generator platform. This highly flexible architecture is capable of synthesizing a wide range of integer and non-integer related frequencies up to 1 GHz on 12 differential clock outputs while delivering sub-100 fs rms phase jitter performance optimized for 100G/200G/400G applications. Each of the clock outputs can be assigned its own format and output voltage enabling the Si5391 to replace multiple clock ICs and oscillators with a single device making it a true "clock tree on a chip."

The Si5391 can be quickly and easily configured using ClockBuilderPro software. Custom part numbers are automatically assigned using ClockBuilder Pro[™] for fast, free, and easy factory pre-programming or the Si5391 can be programmed via I2C and SPI serial interfaces.

Applications:

- 100/200/400G switches
- 56G/112G PAM4 SerDes reference clocks
- · Clock tree generation replacing XOs, buffers, signal format translators
- · Clocking for FPGAs, processors, memory
- · Ethernet switches/routers
- OTN framers/mappers/processors

KEY FEATURES

- Generates any combination of output frequencies from any input frequency
- Ultra-low jitter performance
 - 69fs RMS (Precision Calibration)
 - · 75fs RMS (integer mode)
 - 115fs RMS (fractional mode)
- Input frequency range:
 - · External crystal: 25 to 54 MHz
 - · Differential clock: 10 to 750 MHz
 - LVCMOS clock: 10 to 250 MHz
- Output frequency range:
 - Differential: 100 Hz to 1028 MHz
- LVCMOS: 100 Hz to 250 MHz
- Highly configurable outputs compatible with LVDS, LVPECL, LVCMOS, CML, and HCSL with programmable signal amplitude
- Si5391: 4 input, 12 output, 64-QFN 9x9mm

1. Features List

The Si5391 features are listed below:

- Generates any combination of output frequencies from any input frequency
- Ultra-low phase jitter performance
 - 69fs RMS (Precision Calibration)
 - 75fs RMS (integer mode)
 - 115fs RMS (fractional mode)
- Input frequency range:
 - External crystal: 25 to 54 MHz
 - Differential clock: 10 to 750 MHz
 - LVCMOS clock: 10 to 250 MHz
- Output frequency range:
 - Differential: 100 Hz to 1028 MHz
 - LVCMOS: 100 Hz to 250 MHz
- Highly configurable outputs compatible with LVDS, LVPECL, LVCMOS, CML, and HCSL with programmable signal amplitude
- Optional zero delay mode
- Glitchless on the fly output frequency changes

- DCO mode: as low as 0.001 ppb steps
- Core voltage
 - VDD: 1.8 V ±5%
 - VDDA: 3.3 V ±5%
- Independent output clock supply pins
 - + 3.3 V, 2.5 V, or 1.8 V
- Serial interface: I2C or SPI
- In-circuit programmable with non-volatile OTP memory
- ClockBuilder Pro software simplifies device configuration
- 64-QFN 9x9mm
- Temperature range: –40 to +85 °C
- Pb-free, RoHS-6 compliant

2. Related Documents

Document/Resource	Description/URL
Si5391 Family Reference Manual	https://www.silabs.com/documents/public/reference-manuals/si5391-reference-man- ual.pdf
Crystal Reference Manual	https://www.silabs.com/documents/public/reference-manuals/si534x-8x-recommended- crystals-rm.pdf
Si5391A-A-EVB User Guide	https://www.silabs.com/documents/public/user-guides/ug334-si5391-evb.pdf
Si5391P-A-EVB User Guide	https://www.silabs.com/documents/public/user-guides/ug334-si5391-evb.pdf
Quality and Reliability	http://www.silabs.com/quality
Development Kits	https://www.silabs.com/products/development-tools/timing/clock#highperformance
ClockBuilder Pro (CBPro) Software	https://www.silabs.com/products/development-tools/software/clockbuilder-pro-software

3. Ordering Guide

Ordering Part Num- ber (OPN)	Number of Input/ Output Clocks	Output clock fre- quency range (MHz)	Frequency Synthe- sis Mode	Package	Temperature Range
Si5391A-A-GM ^{1, 2}	4/12	0.001 to 1028	Integer and Fraction-	64-QFN 9x9mm	-40 to 85C
Si5391B-A-GM ^{1, 2}		0.001 to 350	Integer Only		
Si5391C-A-GM ^{1, 2}		0.001 to 1028			
Si5391D-A-GM ^{1, 2}		0.001 to 350			
Si5391P-A-EGM	Crystal / 12	312.5/156.25/100/50 /25	Precision Calibration		
Si5391A-A-EVB	4 / 12	Any-Frequency, Any Output	Integer and Fraction- al	Evaluation Board (A/B/C/D Grades)	
Si5391P-A-EVB	Crystal /12	Ultra low jitter clocks for 56G/112G SerDes	Precision Calibration	Evaluation Board (P Grade)	

Table 3.1. Si5391 Ordering Guide

Note:

1. Add an R at the end of the OPN to denote tape and reel ordering options.

2. Custom, factory pre-programmed devices are available. Ordering part numbers are assigned by Silicon Labs and the ClockBuilder Pro software utility. Custom part number format is: e.g., Si5391A-Axxxx-GM, where "xxxxx" is a unique numerical sequence representing the preprogrammed configuration.

*See Ordering Guide table for current product revision ** 5 digits; assigned by ClockBuilder Pro

Table of Contents

1.	Features List	. 2
2.	Related Documents	. 3
3.	Ordering Guide	. 4
4.	Functional Description.	. 7
	4.1 Power-up and Initialization	. 7
	4.2 Frequency Configuration	. 7
	4.3 Inputs	. 7
	4.3.1 XA/XB Clock and Crystal Input	. 8
	4.3.2 Input Clocks (IN0, IN1, IN2)	. 9 10
	4.4 Fault Monitoring	10
	4.4.1 Status Indicators	.10
	4.4.2 Interrupt Pin (INTRb)	.10
	4.5 Outputs	.11
	4.5.1 Grade A/B/C/D	.11
	4.5.3 Output Signal Format	.11
	4.5.4 Differential Output Terminations.	.12
	4.5.5 Programmable Common Mode Voltage for Differential Outputs	.12
	4.5.7 LVCMOS Output Impedance and Drive Strength Selection.	.12
	4.5.8 LVCMOS Output Signal Swing	.13
	4.5.9 LVCMOS Output Polarity	.13
	4.5.10 Output Enable/Disable	.13
	4.5.12 Synchronous/Asynchronous Output Disable Feature	.13
	4.5.13 Zero Delay Mode (Grade A/B/C/D)	.14
	4.5.14 Output Crosspoint	.14
	4.5.15 Digitally Controlled Oscillator (DCC) Modes	. 14
	4.7 In-Circuit Programming	15
	4.8 Serial Interface	15
	4.9 Custom Factory Preprogrammed Devices	15
	4.10 Enabling Features and/or Configuration Settings Not Available in ClockBuilder Pro for Factory	Pre-
	Programmed Devices	.15
5.	Register Map	. 17
	5.1 Addressing Scheme	.17
6.	Electrical Specifications	. 18
7.	Detailed Block Diagrams	32

8.	Typical Operating Characteristics
9.	Pin Descriptions
10.	Package Outlines
	10.1 Si5391 9x9 mm 64-QFN Package Diagram
11.	PCB Land Pattern
12.	Top Marking
13.	Device Errata
14.	Revision History.

4. Functional Description

The Si5391 combines a wide band PLL with next generation MultiSynth technology to offer the industry's most versatile and high performance clock generator. The PLL locks to either an external **crystal** between XA/XB or to an external **clock** connected to XA/XB or IN0, 1, 2. A fractional or integer multiplier takes the selected input clock or cystal frequency up to a very high frequency that is then divided by the MultiSynth output stage to any frequency in the range of 100 Hz to 1 GHz on each output. The MultiSynth stage can divide by both integer and fractional values. The high-resolution fractional MultiSynth dividers enable true any-frequency input to anyfrequency on any of the outputs. The output drivers offer flexible output formats which are independently configurable on each of the outputs. This clock generator is fully configurable via its serial interface (I²C/SPI) and includes in-circuit programmable non-volatile memory.

4.1 Power-up and Initialization

Once power is applied, the device begins an initialization period where it downloads default register values and configuration data from NVM and performs other initialization tasks. Communicating with the device through the serial interface is possible once this initialization period is complete. No clocks will be generated until the initialization is done. There are two types of resets available. A hard reset is functionally similar to a device power-up. All registers will be restored to the values stored in NVM, and all circuits will be restored to their initial state including the serial interface. A hard reset is initiated using the RSTb pin or by asserting the hard reset bit. A soft reset bypasses the NVM download. It is simply used to initiate register configuration changes.

Figure 4.1. Si5391 Power-Up and Initialization

4.2 Frequency Configuration

The phase-locked loop is fully contained and does not require external loop filter components to operate. Its function is to phase lock to the selected input and provide a common reference to the MultiSynth high-performance fractional dividers.

A crosspoint mux connects any of the MultiSynth divided frequencies to any of the outputs drivers. Additional output integer dividers provide further frequency division by an even integer from 2 to (2^25)-2. The frequency configuration of the device is programmed by setting the input dividers (P), the PLL feedback fractional divider (Mn/Md), the MultiSynth fractional dividers (Nn/Nd), and the output integer dividers (R). Silicon Labs's ClockBuilder Pro configuration utility determines the optimum divider values for any desired input and output frequency plan.

4.3 Inputs

The Si5391 requires either an external crystal at its XA/XB pins or an external clock at XA/XB or IN0, 1, 2.

4.3.1 XA/XB Clock and Crystal Input

An internal crystal oscillator exists between pin XA and XB. When this oscillator is enabled, an external crystal connected across these pins will oscillate and provide a clock input to the PLL. A crystal frequency of 25 MHz can be used although crystals in the frequency range of 48 MHz to 54 MHz are recommended for best jitter performance. The Si5391 Family Reference Manual provides additional information on PCB layout recommendations for the crystal to ensure optimum jitter performance. Refer to Table 6.12 Crystal Specifications on page 30 for crystal specifications. Si5391P must use a 48 MHz crystal input.

To achieve optimal jitter performance and minimize BOM cost, a crystal is recommended on the XA/XB reference input. A clock (e.g., XO) may be used in lieu of the crystal, but it will result in higher output jitter. See the Si5391 Family Reference Manual for more information.

Selection between the external XTAL or input clock is controlled by register configuration. The internal crystal load capacitors (C_L) are disabled in the input clock mode. Refer to Table 6.3 Input Clock Specifications on page 20 for the input clock requirements at XAXB. Both a single-ended or a differential input clock can be connected to the XA/XB pins as shown in the figure below. A P_{XAXB} divider is available to accommodate external clock frequencies higher than 54 MHz.

Note: 2.5 Vpp diff max

4.3.2 Input Clocks (IN0, IN1, IN2)

A differential or single-ended clock can be applied at IN2, IN1, or IN0. The recommended input termination schemes are shown in the figure below. Input clock support is not available on Precision Calibration Si5391P.

Standard AC Coupled Differential LVPECL

Standard AC Coupled Single Ended

Pulsed CMOS DC Coupled Single Ended

Figure 4.3. Termination of Differential and LVCMOS Input Signals

4.3.3 Input Selection (IN0, IN1, IN2, XA/XB)

The active clock input is selected using the IN_SEL[1:0] pins or by register control. A register bit determines input selection as pin or register selectable. There are internal pull ups on the IN_SEL pins.

IN_SEL[1:0]		Selected Input
0	0	INO
0	1	IN1
1	0	IN2
1	1	XA/XB

4.4 Fault Monitoring

The Si5391 provides fault indicators which monitor loss of signal (LOS) of the inputs (IN0, IN1, IN2, XA/XB, FB_IN) and loss of lock (LOL) for the PLL as shown in the figure below.

Figure 4.4. LOS and LOL Fault Monitors

4.4.1 Status Indicators

The state of the status monitors are accessible by reading registers through the serial interface or with a dedicated pin (LOLb). Each of the status indicator register bits has a corresponding sticky bit in a separate register location. Once a status bit is asserted its corresponding sticky bit (_FLG) will remain asserted until cleared. Writing a logic zero to a sticky register bit clears its state.

4.4.2 Interrupt Pin (INTRb)

An interrupt pin (INTRb) indicates a change in state with any of the status registers. All status registers are maskable to prevent assertion of the interrupt pin. The state of the INTRb pin is reset by clearing the status registers.

4.5 Outputs

The Si5391 supports 12 differential output drivers which can be independently configured as differential or LVCMOS.

Each driver has a configurable voltage swing and common mode voltage covering a wide variety of differential signal formats. In addition to supporting differential signals, any of the outputs can be configured as single-ended LVCMOS (3.3 V, 2.5 V, or 1.8 V) providing up to 24 single-ended outputs, or any combination of differential and single-ended outputs.

4.5.1 Grade A/B/C/D

The Si539x grades A/B/C/D can generate any output frequency in any format with best-in-class jitter. These devices are available as a preprogrammed option or can be written to the device via I²C. The input/output frequency plan determines whether the output divider operates in integer or fractional mode. In the fractional mode, the device can generate any output frequency or any format from any input frequency with best-in-class jitter. Some frequency plans allow the user to use an integer mode that delivers even lower jitter. See the family reference manual for more details.

4.5.2 Grade P

Some applications, including 56G/112G PAM4 SerDes, require even better RMS phase jitter performance. The Si5391P grade internally calibrates out linearity errors to deliver the world's best jitter performance for applications focused on 312.5 MHz and 156.25 MHz frequencies. In addition to the primary 312.5/156.25MHz frequencies, the device can also support 100MHz, 50 MHz and 25 MHz outputs. The three conditions required for optimum performance Precision Calibration grade are:

1. An unused channel between the low-jitter 156.25/312.5MHz clocks and secondary clocks (100/50/25 MHz)

- 2. CMOS clocks should not be used for the secondary clocks.
- 3.48MHz crystal input. Clock input is not supported on Precision Calibration grade.

A typical example is shown in the figure below. With this configuration, it is possible to deliver a best-in-class 69 fs of phase jitter on the 312.5 MHz and 156.25 MHz outputs.

4.5.3 Output Signal Format

The differential output amplitude and common mode voltage are both fully programmable and compatible with a wide variety of signal formats including LVDS and LVPECL. In addition to supporting differential signals, any of the outputs can be configured as LVCMOS (3.3 V, 2.5 V, or 1.8 V) drivers providing up to 24 single-ended outputs, or any combination of differential and single-ended outputs.

4.5.4 Differential Output Terminations

The differential output drivers support both ac-coupled and dc-coupled terminations as shown in the figure below.

DC Coupled LVDS

AC Coupled HCSL

4.5.5 Programmable Common Mode Voltage for Differential Outputs

The common mode voltage (VCM) for the differential modes are programmable so that LVDS specifications can be met and for the best signal integrity with different supply voltages. When dc coupling the output driver it is essential that the receiver should have a relatively high common mode impedance so that the common mode current from the output driver is very small.

4.5.6 LVCMOS Output Terminations

LVCMOS outputs are typically dc-coupled, as shown in the figure below.

DC Coupled LVCMOS

Figure 4.7. LVCMOS Output Terminations

4.5.7 LVCMOS Output Impedance and Drive Strength Selection

Each LVCMOS driver has a configurable output impedance. It is highly recommended that the minimum output impedance (strongest drive setting) is selected and a suitable series resistor (Rs) is chosen to match the trace impedance.

Table 4.2. Nominal Output Impedance vs. OUTx_CMOS_DRV (register)

VDDO		CMOS_DRIVE_Selection						
	OUTx_CMOS_DRV=1	OUTx_CMOS_DRV=2	OUTx_CMOS_DRV=3					
3.3 V	38 Ω	30 Ω	22 Ω					
2.5 V	43 Ω	35 Ω	24 Ω					
1.8 V	_	46 Ω	31 Ω					
Note: Refer to the Si5391 Far	Note: Refer to the Si5391 Family Reference Manual for more information on register settings.							

4.5.8 LVCMOS Output Signal Swing

The signal swing (V_{OL}/V_{OH}) of the LVCMOS output drivers is set by the voltage on the VDDO pins. Each output driver has its own VDDO pin allowing a unique output voltage swing for each of the LVCMOS drivers.

4.5.9 LVCMOS Output Polarity

When a driver is configured as an LVCMOS output it generates a clock signal on both pins (OUTx and OUTxb). By default the clock on the OUTxb pin is generated with complementary polarity with the clock on the OUTx pin. The LVCMOS OUTx and OUTxb outputs can also be generated in phase.

4.5.10 Output Enable/Disable

The OEb pin provides a convenient method of disabling or enabling the output drivers. When the OEb pin is held high all outputs will be disabled. When held low, the outputs will be enabled. Outputs in the enabled state can be individually disabled through register control.

4.5.11 Output Driver State When Disabled

The disabled state of an output driver is configurable as: disable low or disable high.

4.5.12 Synchronous/Asynchronous Output Disable Feature

Outputs can be configured to disable synchronously or asynchronously. The default state is synchronous output disable. In synchronous disable mode the output will wait until a clock period has completed before the driver is disabled. This prevents unwanted runt pulses from occurring when disabling an output. In asynchronous disable mode the output clock will disable immediately without waiting for the period to complete.

4.5.13 Zero Delay Mode (Grade A/B/C/D)

A zero delay mode is available for applications that require fixed and consistent minimum delay between the selected input and outputs. The zero delay mode is configured by opening the internal feedback loop through software configuration and closing the loop externally as shown in the figure below. This helps to cancel out the internal delay introduced by the dividers, the crosspoint, the input, and the output drivers. Any one of the outputs can be fed back to the FB_IN pins, although using the output driver that achieves the shortest trace length will help to minimize the input-to-output delay. It is recommended to connect OUT9A to FB_IN for external feedback. The FB_IN input pins must be terminated and ac-coupled when zero delay mode is used. A differential external feedback path connection is necessary for best performance.

External Feedback Path

Figure 4.8. Si5391 Zero Delay Mode Setup

4.5.14 Output Crosspoint

The output crosspoint allows any of the N dividers to connect to any of the clock outputs.

4.5.15 Digitally Controlled Oscillator (DCO) Modes

Each MultiSynth can be digitally controlled so that all outputs connected to the MultiSynth change frequency in real time without any transition glitches. There are two ways to control the MultiSynth to accomplish this task:

- Use the Frequency Increment/Decrement Pins or register bits.
- Write directly to the numerator of the MultiSynth divider.

An output that is controlled as a DCO is useful for simple tasks such as frequency margining or CPU speed control. The output can also be used for more sophisticated tasks such as FIFO management by adjusting the frequency of the read or write clock to the FIFO or using the output as a variable Local Oscillator in a radio application.

4.5.15.1 DCO with Frequency Increment/Decrement Pins/Bits

Each of the MultiSynth fractional dividers can be independently stepped up or down in predefined steps with a resolution as low as 0.001 ppb. Setting of the step size and control of the frequency increment or decrement is accomplished by setting the step size with the 44 bit Frequency Step Word (FSTEPW). When the FINC or FDEC pin or register bit is asserted the output frequency will increment or decrement respectively by the amount specified in the FSTEPW.

4.5.15.2 DCO with Direct Register Writes

When a MultiSynth numerator and its corresponding update bit is written, the new numerator value will take effect and the output frequency will change without any glitches. The MultiSynth numerator and denominator terms can be left and right shifted so that the least significant bit of the numerator word represents the exact step resolution that is needed for your application.

4.6 Power Management

Several unused functions can be powered down to minimize power consumption. Consult the Si5391 Family Reference Manual and ClockBuilder Pro configuration utility for details.

4.7 In-Circuit Programming

The Si5391 is fully configurable using the serial interface (I²C or SPI). At power-up the device downloads its default register values from internal non-volatile memory (NVM). Application specific default configurations can be written into NVM allowing the device to generate specific clock frequencies at power-up. Writing default values to NVM is in-circuit programmable with normal operating power supply voltages applied to its V_{DD} and V_{DDA} pins. The NVM is two time writable. Once a new configuration has been written to NVM, the old configuration is no longer accessible. Refer to the Si5391 Family Reference Manual for a detailed procedure for writing registers to NVM.

4.8 Serial Interface

Configuration and operation of the Si5391 is controlled by reading and writing registers using the I²C or SPI interface. The I2C_SEL pin selects I²C or SPI operation. Communication with both 3.3 V and 1.8 V host is supported. The SPI mode operates in either 4-wire or 3-wire. See the Si5391 Family Reference Manual for details.

4.9 Custom Factory Preprogrammed Devices

For applications where a serial interface is not available for programming the device, custom pre-programmed parts can be ordered with a specific configuration written into NVM. A factory pre-programmed device will generate clocks at power-up. Use the ClockBuilder Pro custom part number wizard (www.silabs.com/clockbuilderpro) to quickly and easily request and generate a custom part number for your configuration. In less than three minutes, you will be able to generate a custom part number with a detailed data sheet addendum matching your design's configuration. Once you receive the confirmation email with the data sheet addendum, simply place an order with your local Silicon Labs sales representative. Samples of your pre-programmed device will ship to you typically within two weeks.

4.10 Enabling Features and/or Configuration Settings Not Available in ClockBuilder Pro for Factory Pre-Programmed Devices

As with essentially all software utilities, ClockBuilder Pro is continuously updated and enhanced. By registering at http://www.silabs.com and opting in for updates to software, you will be notified whenever changes are made and what the impact of those changes are. This update process will ultimately enable ClockBuilder Pro users to access all features and register setting values documented in this data sheet and the Si5391 Family Reference Manual. However, if you must enable or access a feature or register setting value so that the device starts up with this feature or a register setting, but the feature or register setting is NOT yet available in CBPro, you must contact a Silicon Labs applications engineer for assistance. An example of this type of feature or custom setting is the customizable amplitudes for the clock outputs. After careful review of your project file and custom requirements, a Silicon Labs applications engineer will email back your CBPro project file with your specific features and register settings enabled, using what is referred to as the manual "settings override" feature of CBPro. "Override" settings to match your request(s) will be listed in your design report file. Examples of setting "overrides" in a CBPro design report are shown below:

Table 4.3. Setting Overrides

Location	Name	Туре	Target	Dec Value	Hex Value
0128[6:4]	OUT6_AMPL	User	OPN & EVB	5	5

Once you receive the updated design file, simply open it in CBPro. After you create a custom OPN, the device will begin operation after startup with the values in the NVM file, including the Silicon Labs-supplied override settings.

Figure 4.9. Flowchart to Order Custom Parts with Features not Available in CBPro

Note: Contact Silicon Labs Technical Support at www.silabs.com/support/Pages/default.aspx.

5. Register Map

The register map is divided into multiple pages where each page has 256 addressable registers. Page 0 contains frequently accessible registers such as alarm status, resets, device identification, etc. Other pages contain registers that need less frequent access such as frequency configuration, and general device settings. Refer to the Si5391 Family Reference Manual for a complete list of register descriptions and settings.

Note: It is strongly recommended that ClockBuilder Pro be used to create and manage register settings.

5.1 Addressing Scheme

The device registers are accessible using a 16-bit address which consists of an 8-bit page address + 8-bit register address. By default the page address is set to 0x00. Changing to another page is accomplished by writing to the 'Set Page Address' byte located at address 0x01 of each page.

6. Electrical Specifications

Table 6.1. Recommended Operating Conditions¹

 $(V_{DD}=1.8 V \pm 5\%, V_{DDA}=3.3 V \pm 5\%, T_{A}=-40 \text{ to } 85^{\circ}\text{C})$

Parameter	Symbol	Min	Тур	Мах	Units
Ambient Temperature	T _A	-40	25	85	°C
Junction Temperature	TJ _{MAX}		_	125	°C
Core Supply Voltage	V _{DD}	1.71	1.80	1.89	V
	V _{DDA}	3.14	3.30	3.47	V
Output Driver Supply Voltage	V _{DDO}	3.14	3.30	3.47	V
		2.37	2.50	2.62	V
		1.71	1.80	1.89	V

Note:

1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.

Table 6.2. DC Characteristics

$(V_{DD}=1.8V \pm 5\%, V_{DDA}=3.3V \pm 5\%, V_{DDO}=1.8V \pm 5\%, 2.5V \pm 5\%, or 3.3V \pm 5\%, T_{A}= -40 \text{ to } 85^{\circ}\text{C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Core Supply Current ¹	I _{DD}	Si5391	—	115	230	mA
	I _{DDA}	Si5391	_	120	130	mA
Output Buffer Supply Current	I _{DDOx}	LVPECL Output ²	_	22	26	mA
		@ 156.25 MHz				
		LVDS Output ²	_	15	18	mA
		@ 156.25 MHz				
		3.3 V LVCMOS ³ output	—	22	30	mA
		@ 156.25 MHz				
		2.5 V LVCMOS ³ output	_	18	23	mA
		@ 156.25 MHz				
		1.8 V LVCMOS ³ output		12	16	mA
		@ 156.25 MHz				
Total Power Dissipation ^{1, 4}	Pd	Si5391		880	1350	mW

Note:

1. Si5391 test configuration: 7 x 2.5 V LVDS outputs enabled @ 156.25 MHz. Excludes power in termination resistors.

2. Differential outputs terminated into an ac-coupled 100 Ω load.

3. LVCMOS outputs measured into a 6-inch 50 Ω PCB trace with 5 pF load. The LVCMOS outputs were set to OUTx_CMOS_DRV=3, which is the strongest driver setting. Refer to the Si5391 Family Reference Manual for more details on register settings.

LVCMOS Output Test Configuration

4. Detailed power consumption for any configuration can be estimated using ClockBuilderPro when an evaluation board (EVB) is not available. All EVBs support detailed current measurements for any configuration.

Table 6.3. Input Clock Specifications

(V_DD =1.8 V \pm 5%, V_DDA = 3.3 V \pm 5%, T_A= –40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Standard Input Buffer with Differ	erential or Sing	le-Ended - AC-Coupled (IN0	/IN0b, IN1/IN [,]	1b, IN2/IN2b,	FB_IN/FB_IN)
Input Frequency Range	f _{IN}	Differential	10	_	750	MHz
		All Single-ended Signals	10	_	250	MHz
		(including LVCMOS)				
Input Voltage Swing ¹	V _{IN}	Differential AC-coupled	100		1800	mVpp_se
		f _{IN} < 250 MHz				
		Differential AC-coupled	225	_	1800	mVpp_se
		250 MHz < f _{IN} < 750 MHz				
		Single-ended AC-coupled	100	_	3600	mVpp_se
		f _{IN} < 250 MHz				
Slew Rate ^{2, 3}	SR		400	_	_	V/µs
Input Capacitance	C _{IN}		—	0.3	_	pF
Input Resistance Differential	R _{IN_DIFF}		—	16	_	kΩ
Input Resistance Single-Ended	R _{IN_SE}		—	8		kΩ
Pulsed CMOS Input Buffer - DC	Coupled (IN0,	IN1, IN2) ⁴				·
Input Frequency	f _{IN}		10	_	250	MHz
Input Voltage	V _{IL}		-0.2	_	0.4	V
	V _{IH}		0.8	_	_	V
Slew Rate ^{2, 3}	SR		400			V/µs
Minimum Pulse Width	PW	Pulse Input	1.6	_	_	ns
Input Resistance	R _{IN}		—	8	_	kΩ
REFCLK (Applied to XA/XB) ⁵						
Input Frequency Range	f _{IN}	Full operating range. Jitter performance may be re- duced.	10		200	MHz
		Range for best jitter.	48	_	54	MHz
Input Single-ended Voltage Swing	V _{IN_SE}		365	—	2000	mVpp_se
Input Differential Voltage Swing	V _{IN_DIFF}		365	—	2500	mVpp_diff
Slew Rate ^{2, 3}	SR	Imposed for best jitter per- formance	400	_	_	V/µs
Input Duty Cycle	DC		40	_	60	%

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Note:						
1. Voltage swing is specified as	s single-ended m\	Vcm Vcm Vcm Vcm Vcm Vpj	o_se o_se		Vpp_diff = 2	*Vpp_se
 Pulsed CMOS mode is inten they have a duty cycle signif the input thresholds (V_{IL}, V_I, DC-coupled Pulsed LVCMO Standard AC-Coupled, Sing 	ded primarily for s icantly less than 5 d) of this buffer are S in the Si5391 F le-ended input mc	single-ended LVCMOS input 50%. A typical application ex e non-standard (0.4 and 0.8 amily Reference Manual. Ot ode.	t clocks < 1 M ample is a lov V, respectivel herwise, for s	Hz, which mus v frequency vic y), refer to the tandard LVCM	t be dc-couple deo frame sync input attenuat OS input clock	d because c pulse. Since or circuit for s, use the
4. DC-coupled CMOS Input Bu to IN0,1,2 it is required to ac	ffer selection is no -couple into the d	ot supported in ClockBuilder ifferential input buffer.	Pro for new o	designs. For sir	ngle-ended LV	CMOS inputs

Table 6.4. Control Input Pin Specifications

(V_{DD} =1.8 V ± 5%, V_{DDA} = 3.3 V ± 5%, V_{DDS} = 3.3 V ± 5%, 1.8 V ± 5%, T_A = -40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units		
Si5391 Control Input Pins (I2C_SEL, IN_SEL[1:0], RSTb, OEb, SYNCb, A1, SCLK, A0/CSb, FINC, FDEC, SDA/SDIO)								
Input Voltage	V _{IL}		_	—	0.3xV _{DDIO} 1	V		
	V _{IH}		0.7xV _{DDIO} 1	—	_	V		
Input Capacitance	C _{IN}		_	2	_	pF		
Input Resistance	R _{IN}		_	20	_	kΩ		
Minimum Pulse Width	T _{PW}	RSTb, SYNCb, FINC, and FDEC	100	—	_	ns		
Frequency Update Rate	F _{UR}	FINC and FDEC			1	MHz		

Note:

1. V_{DDIO} is determined by the IO_VDD_SEL bit. It is selectable as V_{DDA} or V_{DD}. Refer to the Si5391 Family Reference Manual for more details on register settings.

Table 6.5. Differential Clock Output Specifications

$(V_{DD}=1.8 V \pm 5\%, V_{DDA}=3.3 V \pm 5\%, V_{DDO}=1.8 V \pm 5\%, 2.5 V \pm 5\%, or 3.3 V \pm 5\%, T_{A}=-40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Cor	ndition	Min	Тур	Мах	Units	
Output Frequency	f _{OUT}	MultiSynth not used		0.0001		720	MHz	
				733.33	_	800.00		
				825	_	1028		
		MultiSynt	h used	0.0001	_	720	MHz	
Duty Cycle	DC	f _{OUT} < 40	0 MHz	48	_	52	%	
		400 MHz < f _{OUT}	- < 1028 MHz	45	_	55	%	
Output-Output Skew	Т _{SKS}	Outputs on sam	ne MultiSynth	_		75	ps	
Using Same MultiSynth		(Measured at	712.5 MHz)					
OUT-OUTb Skew	T _{SK_OUT}	Measured from the positive to negative output pins		_	0	50	ps	
Output Voltage Swing ¹	V _{OUT}	LVDS LVPECL		350	430	510	mVpp_se	
				640	750	900		
Common Mode Voltage ¹	V _{CM}	V _{DDO} = 3.3 V	LVDS	1.10	1.2	1.3	V	
			LVPECL	1.90	2.0	2.1		
		V _{DDO} = 2.5 V	LVPECL	1.1	1.2	1.3		
			LVDS					
		V _{DDO} = 1.8 V	Sub-LVDS	0.8	0.9	1.0		
Rise and Fall Times	t _R /t _F			_	100	150	ps	
(20% to 80%)								
Differential Output Impedance	Z _O			—	100	_	Ω	
Power Supply Noise Rejection ²	PSRR	10 kHz sinusoidal noise100 kHz sinusoidal noise500 kHz sinusoidal noise1 MHz sinusoidal noise		_	-101		dBc	
				_	-96	_	1	
				_	-99	_		
				_	-97	_		
Output-Output Crosstalk ³	XTALK	Si53	91	_	-72		dBc	

Notes:

 Output amplitude and common-mode settings are programmable through register settings and can be stored in NVM. Each output driver can be programmed independently. The maximum LVDS single-ended amplitude can be up to 110 mV higher than the TIA/EIA-644 maximum. Refer to the Si5391 Family Reference Manual for more suggested output settings. Not all combinations of voltage amplitude and common mode voltages settings are possible.

- 2. Measured for 156.25 MHz carrier frequency. 100 mVpp sinewave noise added to VDDO = 3.3 V and noise spur amplitude measured.
- 3. Measured across two adjacent outputs, both in LVDS mode, with the victim running at 155.52 MHz and the aggressor at 156.25 MHz.

Table 6.6. LVCMOS Clock Output Specifications

(V_{DD} =1.8 V \pm 5%, V_{DDA}= 3.3 V \pm 5%, V_{DDO}= 1.8 V \pm 5%, 2.5 V \pm 5%, or 3.3 V \pm 5%, T_A = -40 to 85 °C)

Parameter	Symbol	Test Condition		Min	Тур	Мах	Units		
Output Frequency			0.0001	_	250	MHz			
Duty Cycle	DC	f _{OUT} < 100 MHz		48	_	52	%		
		100 MHz < f _{OUT} <	250 MHz	45	_	55			
Output Voltage High ^{1, 2, 3}	V _{OH}	V _{DDO} = 3.3 V							
		OUTx_CMOS_DRV=1	I _{OH =} -10 mA	V _{DDO} x 0.85	_	_	V		
		OUTx_CMOS_DRV=2	I _{OH =} -12 mA	-		_			
		OUTx_CMOS_DRV=3	I _{OH =} -17 mA		_	_			
		V _{DDO} = 2.5 V							
		OUTx_CMOS_DRV=1	I _{OH =} -6 mA	V _{DDO} x 0.85	_	_	V		
		OUTx_CMOS_DRV=2	I _{OH =} -8 mA		_	_			
		OUTx_CMOS_DRV=3	I _{OH =} -11 mA		_	_			
		V _{DDO} = 1.8 V							
		OUTx_CMOS_DRV=2	I _{OH =} -4 mA	V _{DDO} x 0.85	_	_	V		
		OUTx_CMOS_DRV=3	I _{OH =} -5 mA			_			
Output Voltage Low ^{1, 2, 3}	V _{OL}	V _{DDO} = 3.3 V							
		OUTx_CMOS_DRV=1	I _{OL} = 10 mA	_	_	V _{DDO} x 0.15	V		
		OUTx_CMOS_DRV=2	I _{OL} = 12 mA	_	_				
		OUTx_CMOS_DRV=3	I _{OL} = 17 mA	_	_				
		V _{DDO} = 2.5 V							
		OUTx_CMOS_DRV=1	I _{OL} = 6 mA	_	_	V _{DDO} x 0.15	V		
		OUTx_CMOS_DRV=2	I _{OL} = 8 mA	—	_				
		OUTx_CMOS_DRV=3	I _{OL} = 11 mA						
		V _{DDO} = 1.8 V							
		OUTx_CMOS_DRV=2	I _{OL} = 4 mA	—	_	V _{DDO} x 0.15	V		
		OUTx_CMOS_DRV=3	I _{OL} = 5 mA	_	_				
LVCMOS Rise and Fall	tr/tf	VDDO = 3.3V		_	400	600	ps		
Times ³		VDDO = 2.5 V		_	450	600	ps		
(20% to 80%)		VDDO = 1.8 V		_	550	750	ps		

Table 6.7. Output Status Pin Specifications

$(V_{DD} = 1.8 \text{ V} \pm 5\%, V_{DDA} = 3.3 \text{ V} \pm 5\%, V_{DDS} = 3.3 \text{ V} \pm 5\%, 1.8 \text{ V} \pm 5\%, T_A = -40 \text{ to } 85^{\circ}\text{C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Units			
Si5391 Status Output Pins (INTRb, SDA/SDIO) ¹									
Output Voltage	V _{OH}	I _{OH} = -2 mA	V _{DDIO} ² x 0.85	_	_	V			
	V _{OL}	I _{OL} = 2 mA	_	_	V _{DDIO} ² x 0.15	V			
Si5391 Status Output Pins (LOLb)									
Output Voltage	V _{OH}	I _{OH} = -2 mA	V _{DDIO} ² x 0.85	_	_	V			
	V _{OL}	I _{OL} = 2 mA	_	_	V _{DDIO} ² x 0.15	V			

Notes:

1. The V_{OH} specification does not apply to the open-drain SDA/SDIO output when the serial interface is in I2C mode or is unused with I2C_SEL pulled high. V_{OL} remains valid in all cases.

2. V_{DDIO} is determined by the IO_VDD_SEL bit. It is selectable as V_{DDA} or V_{DD}. Refer to the Si5391 Family Reference Manual for more details on register settings.

Table 6.8. Performance Characteristics

(V_{DD}= 1.8 V ± 5%, V_{DDA}= 3.3 V ± 5%, T_A= –40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units	
PLL Loop Bandwidth	f _{BW}			_	1.0	_	MHz
Initial Start-Up Time	t _{START}	Time from power-up to when the device gen- erates clocks (Input Frequency >48 MHz)		_	30	45	ms
PLL Lock Time ¹	t _{ACQ}	f _{IN} = 19.44 MHz		15		150	ms
POR ² to Serial Interface Ready	t _{RDY}			_		15	ms
RMS Phase Jitter ⁵ (Grade P)	J _{GEN}	f _{IN} = 48 MHz crystal	f _{OUT} = 156.25 MHz		69	90	fs
			f _{OUT} = 312.5 MHz		69	95	fs
			f _{OUT} = 100 MHz		150	200	fs
			f _{OUT} = 50/25 MHz		200	300	fs
RMS Phase Jitter ⁶ (Grade A/B/C/D)	J _{GEN}	f _{IN} = 48 MHz crystal	Output divider Integer Mode ₃		75	115	fs
			Output divider Frac- tional Mode ⁴		115	145	fs
RMS Phase Jitter ⁶ (Grade A/B/C/D)	J _{GEN}	f _{IN} = 100 MHz clock	Output divider Integer Mode ₃		145	195	fs
			Output divider Frac- tional Mode ⁴		165	215	fs