mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Si823x Data Sheet

0.5 and 4.0 Amp ISOdrivers (2.5 and 5 kV_{RMS})

The Si823x isolated driver family combines two independent, isolated drivers into a single package. The Si8230/1/3/4 are high-side/low-side drivers, while the Si8232/5/7/8 are dual drivers. Versions with peak output currents of 0.5 A (Si8230/1/2/7) and 4.0 A (Si8233/4/5/8) are available. All drivers operate with a maximum supply voltage of 24 V.

The Si823x drivers utilize Silicon Labs' proprietary silicon isolation technology, which provides up to 5 kV_{RMS} withstand voltage per UL1577 and fast 45 ns propagation times. Driver outputs can be grounded to the same or separate grounds or connected to a positive or negative voltage. The TTL level compatible inputs with >400 mV hysteresis are available in individual control input (Si8230/2/3/5/7/8) or PWM input (Si8231/4) configurations. High integration, low propagation delay, small installed size, flexibility, and cost-effectiveness make the Si823x family ideal for a wide range of isolated MOSFET/IGBT gate drive applications.

Applications

- · Power delivery systems
- · Motor control systems
- · Isolated dc-dc power supplies
- Lighting control systems
- · Plasma displays
- · Solar and industrial inverters

Safety Approval

- UL 1577 recognized
 - Up to 5000 V_{RMS} for 1 minute
- CSA component notice 5A approval
 - IEC 60950-1, 62368-1, 60601-1 (reinforced insulation)
- VDE certification conformity
 - VDE 0884-10 Basic Insulation
 - EN 60950-1 Reinforced Insulation
- CQC certification approval
 - GB4943.1

KEY FEATURES

- Two completely isolated drivers in one package
 - + Up to 5 $\rm kV_{RMS}$ input-to-output isolation
 - Up to 1500 V_{DC} peak driver-to-driver differential voltage
- HS/LS and dual driver versions
- Up to 8 MHz switching frequency
- 0.5 A peak output (Si8230/1/2/7)
- 4.0 A peak output (Si8233/4/5/8)
- · High electromagnetic immunity
- · RoHS-compliant packages:
 - SOIC-14/16 wide body
 - SOIC-16 narrow body
 - LGA-14
 - QFN-14 (pin to pin compatible with LGA-14 packages)

1. Feature List

The Si823x highlighted features are listed below.

- · Two completely isolated drivers in one package:
 - + Up to 5 $\rm kV_{RMS}$ input-to-output isolation
 - + Up to 1500 V_{DC} peak driver-to-driver differential voltage
- · HS/LS and dual driver versions
- Up to 8 MHz switching frequency
- 0.5 A peak output (Si8230/1/2/7)
- 4.0 A peak output (Si8233/4/5/8)
- · High electromagnetic immunity
- 45 ns propagation delay (max)
- · Independent HS and LS inputs or PWM input versions
- Overlap protection and programmable dead time
- AEC-Q100 qualification
- Wide operating range:

• -40 to +125 °C

- RoHS-compliant packages:
 - SOIC-14/16 wide body
 - SOIC-16 narrow body
 - LGA-14
 - QFN-14 (pin to pin compatible with LGA-14 packages)

2. Ordering Guide

Table 2.1.	Si823x	Ordering	Guide	1, 2, 3
------------	--------	----------	-------	---------

Ordering Part Number (OPN)	Inputs	Configuration	Peak Current	UVLO Voltage	Isolation Rating	Temp Range	Package Type	Legacy Ordering Part Number (OPN) 2.5 kV Only
Wide Body (WB)	Package O	ptions		1	1		1	1
Si8230BB-D-IS	VIA, VIB	High Side/ Low Side						Si8230-A-IS
Si8231BB-D-IS	PWM	High Side/ Low Side	0.5 A	8 V				Si8231-A-IS
Si8232BB-D-IS	VIA,VIB	Dual Driver	-					Si8232-A-IS
Si8234CB-D-IS	PWM	High Side/ Low Side		10 V	2.5 kVrms	–40 to +125 °C	SOIC-16 Wide Body	N/A
Si8233BB-D-IS	VIA,VIB	High Side/ Low Side	4.0 A	8 V				Si8233-B-IS
Si8234BB-D-IS	PWM	High Side/ Low Side						Si8234-B-IS
Si8235BB-D-IS	VIA,VIB	Dual Driver						Si8235-B-IS
Si8230AB-D-IS	VIA, VIB	High Side/					SOIC-16 Wide Body	N/A
Si8231AB-D-IS	PWM	Low Side	0.5 A	5 V	- 2.5 kVrms	–40 to +125 °C		N/A
Si8232AB-D-IS	VIA,VIB	Dual Driver	_					N/A
Si8233AB-D-IS	VIA,VIB	High Side/			2.5 KVIIIIS			N/A
Si8234AB-D-IS	PWM	Low Side	4.0 A	5 V				N/A
Si8235AB-D-IS	VIA,VIB	Dual Driver	_					N/A
Narrow Body (NB) Package	Options						
Si8230BB-D-IS1	VIA,VIB	High Side/ Low Side						
Si8231BB-D-IS1	PWM	High Side/ Low Side	0.5 A	8 V				
Si8232BB-D-IS1	VIA,VIB	Dual Driver			2.5 kVrms			
Si8233BB-D-IS1	VIA,VIB	High Side/ Low Side			2.3 KVIIIIS	–40 to +125 °C	SOIC-16 Narrow Body	N/A
Si8234BB-D-IS1	PWM	High Side/ Low Side	4.0 A	8 V				
Si8235BB-D-IS1	VIA,VIB	Dual Driver						
Si8235BA-D-IS1	VIA,VIB	Dual Driver			1.0 kVrms			

Si823x Data Sheet Ordering Guide

Ordering Part Number (OPN)	Inputs	Configuration	Peak Current	UVLO Voltage	Isolation Rating	Temp Range	Package Type	Legacy Ordering Part Number (OPN) 2.5 kV Only	
Si8230AB-D-IS1	VIA,VIB	High Side/						N/A	
Si8231AB-D-IS1	PWM	Low Side	0.5 A	5 V				N/A	
Si8232AB-D-IS1	VIA,VIB	Dual Driver			2.5 kVrms	–40 to +125 °C	SOIC-16	N/A	
Si8233AB-D-IS1	VIA,VIB	High Side/					Narrow Body	N/A	
Si8234AB-D-IS1	PWM	Low Side	4.0 A	5 V				N/A	
Si8235AB-D-IS1	VIA,VIB	Dual Driver						N/A	
LGA Package Opt	ions								
Si8233CB-D-IM				10 V				N/A	
Si8233BB-D-IM	VIA,VIB	High Side/ Low Side		8 V				Si8233-B-IM	
Si8233AB-D-IM				5 V				N/A	
Si8234BB-D-IM			4.0 A	8 V	2.5 kVrms	–40 to +125 °C	LGA-14 5x5 mm	Si8234-B-IM	
Si8234AB-D-IM	PWM			5 V	-			N/A	
Si8235BB-D-IM				8 V				Si8235-B-IM	
Si8235AB-D-IM	VIA,VIB	Dual Driver		5 V				N/A	
QFN Package Opt	tions		1	1					
SI8233AB-D-IM1				5 V				N/A	
SI8233BB-D-IM1	VIA,VIB	High Side/ Low Side			8 V		10 10 105 10		N/A
SI8234AB-D-IM1					5 V				N/A
SI8234BB-D-IM1	PWM		4.0 A	8 V	2.5 kVrms	–40 to +125 °C	QFN-14	N/A	
SI8235AB-D-IM1				5 V				N/A	
SI8235BB-D-IM1	VIA,VIB	Dual Driver		8 V	-			N/A	
5 kV Ordering Opt	tions		1	I					
Si8230BD-D-IS	VIA, VIB	High Side/ Low Side							
Si8231BD-D-IS	PWM	High Side/ Low Side	0.5 A						
Si8232BD-D-IS	VIA, VIB	Dual Driver				40.4 405.00	SOIC-16	N1/A	
Si8233BD-D-IS	VIA, VIB	High Side/ Low Side		8 V	5.0 kVrms	–40 to +125 °C	Wide Body	N/A	
Si8234BD-D-IS	PWM	High Side/ Low Side	4.0 A						
Si8235BD-D-IS	VIA, VIB	Dual Driver							

Ordering Part Number (OPN)	Inputs	Configuration	Peak Current	UVLO Voltage	Isolation Rating	Temp Range	Package Type	Legacy Ordering Part Number (OPN) 2.5 kV Only	
Si8230AD-D-IS	VIA, VIB	High Side/						N/A	
Si8231AD-D-IS	PWM	Low Side	0.5 A	5 V				N/A	
Si8232AD-D-IS	VIA, VIB	Dual Driver					SOIC-16	N/A	
Si8233AD-D-IS	VIA, VIB	High Side/			-	Wide Bo	Wide Body	N/A	
Si8234AD-D-IS	PWM	Low Side	4.0 A	5.)(N/A	
Si8235AD-D-IS	VIA, VIB	Dual Driver				5 V	5.0 kVrms	40 to 1125 °C	
SI8230AD-D-IS3	VIA, VIB	High Side/	0.5 A		5.0 KVIIIIS	–40 to +125 °C	SOIC-14 Wide	N/A	
SI8230BD-D-IS3	VIA, VIB	Low Side		8 V			Body with	N/A	
SI8233AD-D-IS3	VIA, VIB		4.0 A	5 V	-		increased	N/A	
SI8233BD-D-IS3	VIA, VIB			8 V	1		creepage	N/A	
SI8235AD-D-IS3	VIA, VIB	Dual Driver	1	5 V				N/A	
SI8235BD-D-IS3	VIA, VIB			8 V				N/A	

Ordering Part Number (OPN)	Inputs	Configuration	Peak Current	UVLO Voltage	Isolation Rating	Temp Range	Package Type	Legacy Ordering Part Number (OPN) 2.5 kV Only
3 V VDDI Ordering	g Options							
Si8237AB-D-IS1	VIA, VIB	Dual Driver	0.5 A	5 V				
Si8237BB-D-IS1	VIA, VIB	Dual Driver	0.5 A	8 V	2 E k / rmc		SOIC-16	
Si8238AB-D-IS1	VIA, VIB	Dual Driver	40.0	5 V	2.5 kVrms		Narrow Body	
Si8238BB-D-IS1	VIA, VIB	Dual Driver	4.0 A	8 V				
Si8237AD-D-IS	VIA, VIB	Dual Driver	0.5.4	5 V				
Si8237BD-D-IS	VIA, VIB	Dual Driver	0.5 A	8 V		–40 to +125 °C	SOIC-16	
Si8238AD-D-IS	VIA, VIB	Dual Driver		5 V			Wide Body	
Si8238BD-D-IS	VIA, VIB	Dual Driver		8 V	5.0 kVrms			
SI8238AD-D-IS3	VIA, VIB	Dual Driver	4.0 A	5 V			SOIC-14 Wide	
SI8238BD-D-IS3	VIA, VIB	Dual Driver		8 V	1		Body with	
							increased	
							creepage	

1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifications and peak solder temperatures.

2. "Si" and "SI" are used interchangeably.

3. An "R" at the end of the part number denotes tape and reel packaging option.

Table of Contents

1.	Feature List	. 2
2.	Ordering Guide	. 3
3.	System Overview	. 8
	3.1 Top Level Block Diagrams.	. 8
	3.2 Functional Description	.10
	3.3 Typical Operating Characteristics (0.5 Amp).	.11
	3.4 Typical Operating Characteristics (4.0 Amp).	.14
	3.5 Family Overview and Logic Operation During Startup	.16
	3.6 Power Supply Connections	
	3.7 Power Dissipation Considerations	
	3.8 Layout Considerations	
	3.9 Undervoltage Lockout Operation	.21 .21 .21 .22
	3.10 Programmable Dead Time and Overlap Protection	
4	Electrical Specifications	
	4.1 Test Circuits	
5.	Applications. <	
6.	Pin Descriptions	36
7.	Package Outlines	42
	7.1 Package Outline: 16-Pin Wide Body SOIC	
	7.2 Package Outline: 14-Pin Wide Body SOIC	.44
	7.3 Package Outline: 16-Pin Narrow Body SOIC	.46
	7.4 Package Outline: 14 LD LGA (5 x 5 mm)	.47
	7.5 Package Outline: 14 LD QFN.	.48
8.	Land Patterns	49
	8.1 Land Pattern: 16-Pin Wide Body SOIC	
	8.2 Land Pattern: 14-Pin Wide Body SOIC	
	8.3 Land Pattern: 16-Pin Narrow Body SOIC	

	8.4 Land Pattern: 14 LD LGA/QFN	.52
9.	Top Markings	53
	9.1 Si823x Top Marking (14/16-Pin Wide Body SOIC)	.53
	9.2 Si823x Top Marking (16-Pin Narrow Body SOIC)	.54
	9.3 Si823x Top Marking (14 LD LGA/QFN)	.55
10	. Revision History	56

3. System Overview

3.1 Top Level Block Diagrams

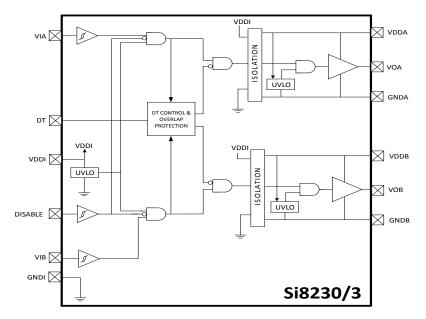


Figure 3.1. Si8230/3 Two-Input High-Side/Low-Side Isolated Drivers

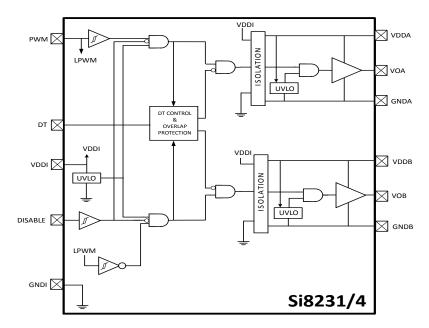


Figure 3.2. Si8231/4 Single-Input High-Side/Low-Side Isolated Drivers

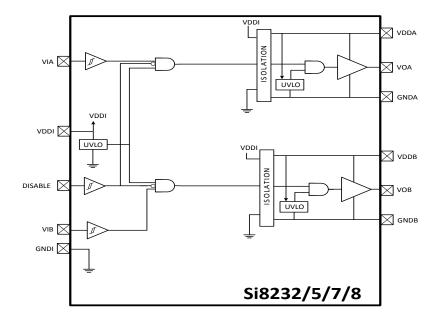


Figure 3.3. Si8232/5/7/8 Dual Isolated Drivers

3.2 Functional Description

The operation of an Si823x channel is analogous to that of an optocoupler and gate driver, except an RF carrier is modulated instead of light. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified block diagram for a single Si823x channel is shown in the figure below.

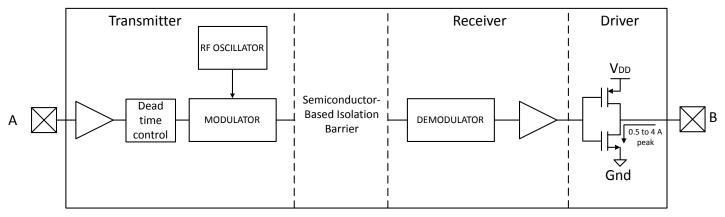


Figure 3.4. Simplified Channel Diagram

A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See the figure below for more details.

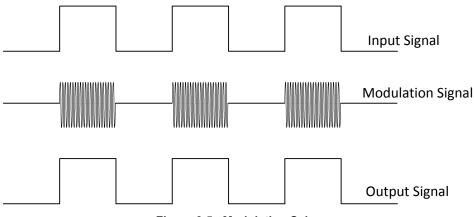


Figure 3.5. Modulation Scheme

3.3 Typical Operating Characteristics (0.5 Amp)

The typical performance characteristics depicted in Figure 3.6 Rise/Fall Time vs. Supply Voltage on page 11 through Figure 3.15 Output Source Current vs. Temperature on page 12 are for information purposes only. Refer to Table 4.1 Electrical Characteristics¹ on page 25 for actual specification limits.

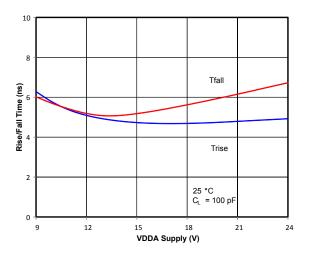


Figure 3.6. Rise/Fall Time vs. Supply Voltage

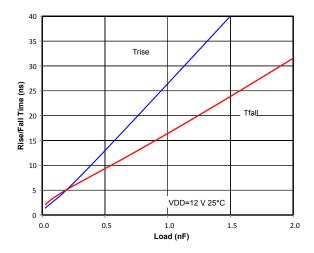


Figure 3.8. Rise/Fall Time vs. Load

Figure 3.7. Propagation Delay vs. Supply Voltage

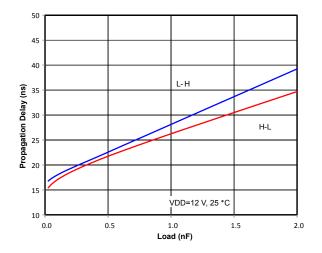


Figure 3.9. Propagation Delay vs. Load

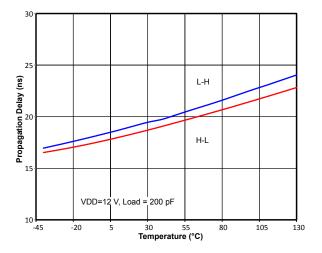


Figure 3.10. Propagation Delay vs. Temperature

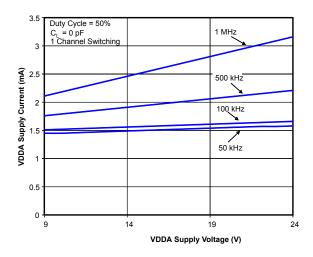


Figure 3.12. Supply Current vs. Supply Voltage

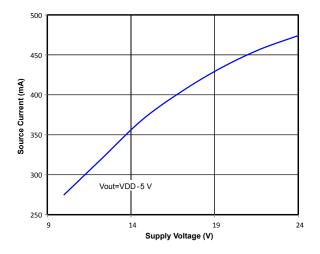


Figure 3.14. Output Source Current vs. Supply Voltage

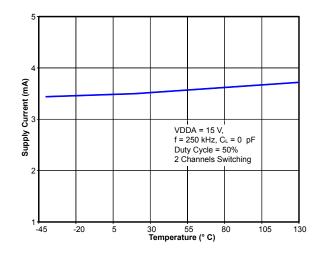


Figure 3.11. Supply Current vs. Temperature

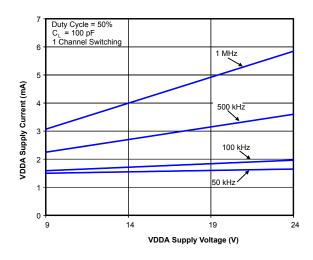


Figure 3.13. Supply Current vs. Supply Voltage

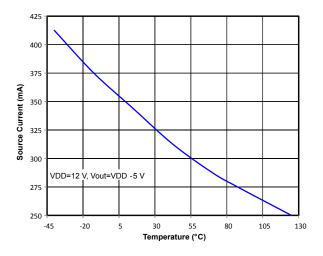


Figure 3.15. Output Source Current vs. Temperature

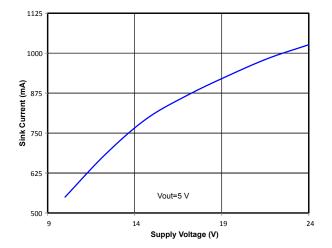


Figure 3.16. Output Sink Current vs. Supply Voltage

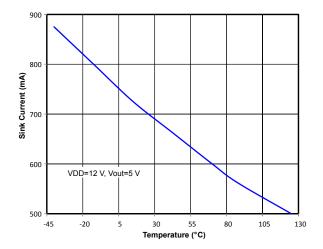


Figure 3.17. Output Sink Current vs. Temperature

3.4 Typical Operating Characteristics (4.0 Amp)

The typical performance characteristics depicted in Figure 3.18 Rise/Fall Time vs. Supply Voltage on page 14 through Figure 3.27 Output Source Current vs. Temperature on page 15 are for information purposes only. Refer to Table 4.1 Electrical Characteristics¹ on page 25 for actual specification limits.

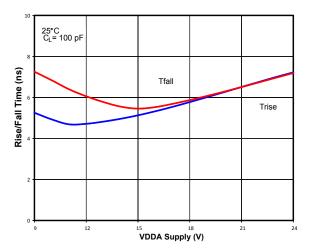


Figure 3.18. Rise/Fall Time vs. Supply Voltage

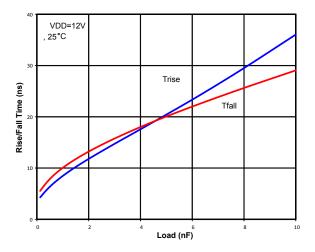


Figure 3.20. Rise/Fall Time vs. Load

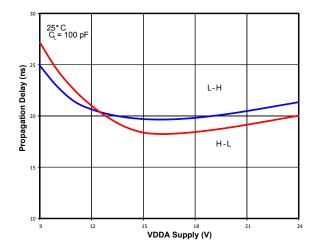


Figure 3.19. Propagation Delay vs. Supply Voltage

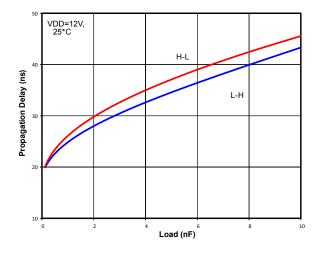


Figure 3.21. Propagation Delay vs. Load

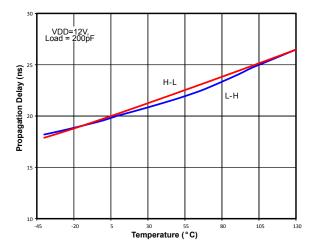


Figure 3.22. Propagation Delay vs. Temperature

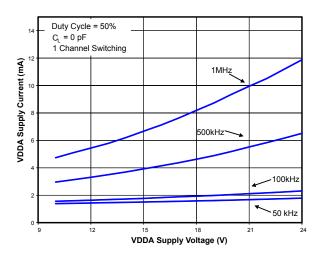


Figure 3.24. Supply Current vs. Supply Voltage

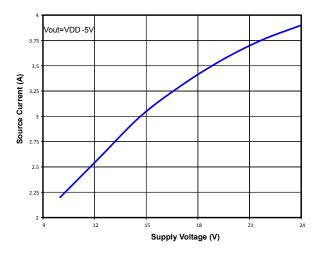


Figure 3.26. Output Source Current vs. Supply Voltage

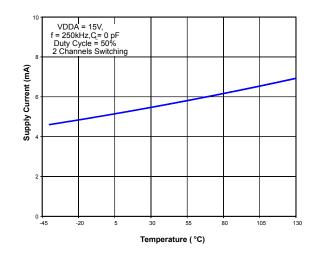


Figure 3.23. Supply Current vs. Temperature

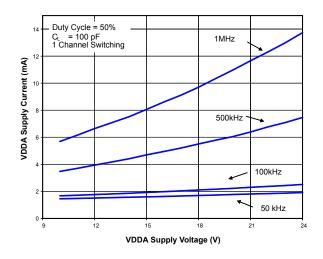


Figure 3.25. Supply Current vs. Supply Voltage

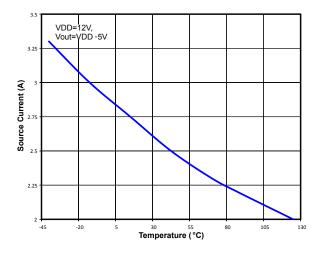


Figure 3.27. Output Source Current vs. Temperature

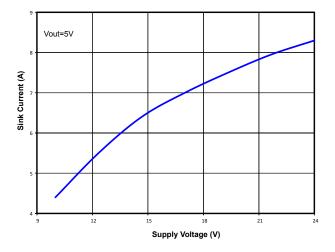


Figure 3.28. Output Sink Current vs. Supply Voltage

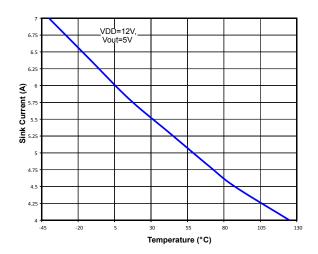


Figure 3.29. Output Sink Current vs. Temperature

3.5 Family Overview and Logic Operation During Startup

The Si823x family of isolated drivers consists of high-side, low-side, and dual driver configurations.

3.5.1 Products

The table below shows the configuration and functional overview for each product in this family.

Table 3.1.	Si823x	Family	Overview
------------	--------	--------	----------

Part Number	Configuration	Overlap Protection	Programmable Dead Time	Inputs	Peak Output Cur- rent (A)
Si8230	High-Side/Low-Side	\checkmark	\checkmark	VIA, VIB	0.5
Si8231	High-Side/Low-Side	\checkmark	\checkmark	PWM	0.5
Si8232/7	Dual Driver	—	—	VIA, VIB	0.5
Si8233	High-Side/Low-Side	\checkmark	\checkmark	VIA, VIB	4.0
Si8234	High-Side/Low-Side	\checkmark	\checkmark	PWM	4.0
Si8235/8	Dual Driver	—	—	VIA, VIB	4.0

3.5.2 Device Behavior

The table below consists of truth tables for the Si8230/3, Si8231/4, and Si8232/5/7/8 families.

Table 3.2.	Si823x	Family	Truth	Table ¹
------------	--------	--------	-------	--------------------

			5182:	su/s (High	1-510e/L0	w-Side) Truth Table	
Inp	outs	VDDI State	Disable	Ou	tput	Notes	
VIA	VIB			VOA	VOB		
L	L	Powered	L	L	L	Output transition occurs after internal dead time expires.	
L	Н	Powered	L	L	Н	Output transition occurs after internal dead time expires.	
Н	L	Powered	L	Н	L	Output transition occurs after internal dead time expires.	
Н	н	Powered	L	L	L	Invalid state. Output transition occurs after internal dead time expires.	
X ²	X ²	Unpowered	Х	L	L	Output returns to input state within 7 μ s of VDDI power restoration.	
Х	Х	Powered	Н	L	L	Device is disabled.	
Si8231/4	(PWM In	put High-Side/	Low-Side)	Truth Tal	ole		
PWM	Input	VDDI State	Disable	Ou	tput	Notes	
				VOA	VOB		
I	Н	Powered	L	Н	L	Output transition occurs after internal dead time expires.	
	L	Powered	L	L	Н	Output transition occurs after internal dead time expires.	
>	K ²	Unpowered	Х	L	L	Output returns to input state within 7 μ s of VDDI power restoration.	
2	Х	Powered	Н	L	L	Device is disabled.	
Si8232/5	5/7/8 (Dua	Driver) Truth	Table				
Inp	outs	VDDI State	Disable	Ou	tput	Notes	
VIA	VIB	-		VOA	VOB	-	
L	L	Powered	L	L	L	Output transition occurs immediately (no internal dead time).	
L	н	Powered	L	L	н	Output transition occurs immediately (no internal dead time).	
Н	L	Powered	L	Н	L	Output transition occurs immediately (no internal dead time).	
Н	Н	Powered	L	Н	Н	Output transition occurs immediately (no internal dead time).	
X ²	X ²	Unpowered	Х	L	L	Output returns to input state within 7 μ s of VDDI power restoration.	
^ -					1		

1. This truth table assumes VDDA and VDDB are powered. If VDDA and VDDB are below UVLO, see 3.9 Undervoltage Lockout Operation for more information.

2. Note that an input can power the input die through an internal diode if its source has adequate current.

3.6 Power Supply Connections

Isolation requirements mandate individual supplies for VDDI, VDDA, and VDDB. The decoupling caps for these supplies must be placed as close to the VDD and GND pins of the Si823x as possible. The optimum values for these capacitors depend on load current and the distance between the chip and the regulator that powers it. Low effective series resistance (ESR) capacitors, such as Tantalum, are recommended.

3.7 Power Dissipation Considerations

Proper system design must assure that the Si823x operates within safe thermal limits across the entire load range. The Si823x total power dissipation is the sum of the power dissipated by bias supply current, internal parasitic switching losses, and power dissipated by the series gate resistor and load. Equation 1 shows total Si823x power dissipation.

$$P_{D} = (V_{DDI})(I_{DDI}) + 2(I_{DD2})(V_{DD2}) + (f)(Q_{TL})(V_{DD2})\left[\frac{R_{p}}{R_{p} + R_{g}}\right] + (f)(Q_{TL})(V_{DD2})\left[\frac{R_{p}}{R_{p} + R_{g}}\right] + 2fCintV_{DD2}^{2}$$

where:

P_D is the total Si823x device power dissipation (W)

I_{DDI} is the input-side maximum bias current (3 mA)

I_{DD2} is the driver die maximum bias current (2.5 mA)

Cint is the internal parasitic capacitance (75 pF for the 0.5 A driver and 370 pF for the 4.0 A driver)

VDDI is the input-side VDD supply voltage (2.7 to 5.5 V)

V_{DD2} is the driver-side supply voltage (10 to 24 V)

f is the switching frequency (Hz)

 Q_{TL} is the gate charge of the FET being driven

R_G is the external gate resistor

 R_{P} is the $R_{DS(ON)}$ of the driver pull-up switch: ($R_{P} = 15 \Omega$ for the 0.5 A driver; $R_{P} = 2.7 \Omega$ for the 4.0 A driver)

 R_n is the $R_{DS(ON)}$ of the driver pull-down switch: (Rn = 5 Ω for the 0.5 A driver and 1 Ω for the 4.0 A driver)

Equation 1

Power dissipation example for 0.5 A driver using Equation 1 with the following givens:

 $V_{DDI} = 5.0 V$

V_{DD2} = 12 V

f = 350 kHz

 $R_G = 22 \Omega$

Q_{TL} = 25 nC

$$Pd = 0.015 + 0.060 + (350 \times 10^{3})(25 \times 10^{-9})(12)\left[\frac{5}{5+22}\right] + 2[(350 \times 10^{3})(75 \times 10^{-12})(144)] = 145 \text{ mW}$$

From which the driver junction temperature is calculated using Equation 2, where:

Pd is the total Si823x device power dissipation (W)

θja is the thermal resistance from junction to air (105 °C/W in this example)

T_A is the ambient temperature

$$T_j = P_d \times \Theta_{ja} \times T_A = (0.145)(105) + 20 = 35.2^{\circ}C$$

The maximum power dissipation allowable for the Si823x is a function of the package thermal resistance, ambient temperature, and maximum allowable junction temperature, as shown in Equation 2:

$$P_{Dmax} \le \frac{T_{jmax} - T_A}{\Theta ja}$$

where:

P_{Dmax} = Maximum Si823x power dissipation (W)

T_{imax} = Si823x maximum junction temperature (150 °C)

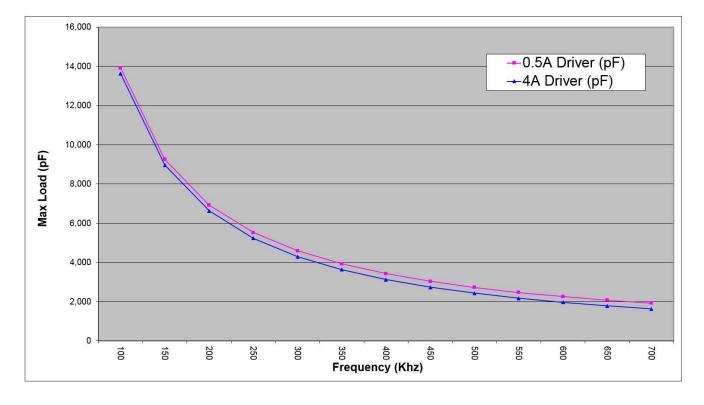
 T_A = Ambient temperature (°C)

 Θ ja = Si823x junction-to-air thermal resistance (105 °C/W)

f = Si823x switching frequency (Hz)

Equation 2

Substituting values for $P_{Dmax} T_{jmax}$, T_A , and θ_{ja} into Equation 2 results in a maximum allowable total power dissipation of 1.19 W. Maximum allowable load is found by substituting this limit and the appropriate data sheet values from Table 4.1 Electrical Characteristics¹ on page 25 into Equation 1 and simplifying. The result is Equation 3 (0.5 A driver) and Equation 4 (4.0 A driver), both of which assume VDDI = 5 V and VDDA = VDDB = 18 V.


 $C_{L(MAX)} = \frac{1.4 \times 10^{-3}}{f} - 7.5 \times 10^{-11}$

Equation 3

$$C_{L(MAX)} = \frac{1.4 \times 10^{-3}}{f} - 3.7 \times 10^{-10}$$

Equation 4

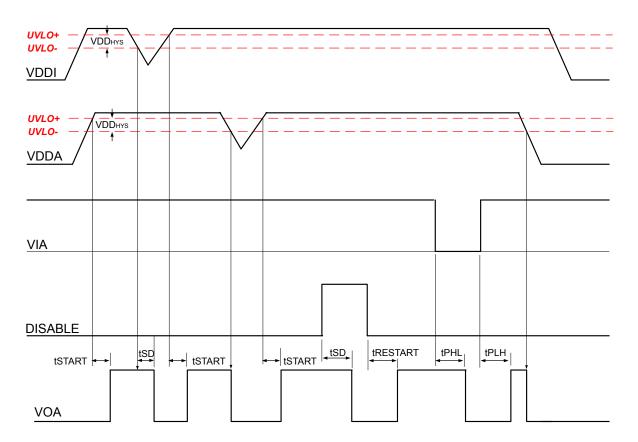
Equation 3 and Equation 4 are graphed in the figure below, where the points along the load line represent the package dissipationlimited value of CL for the corresponding switching frequency.

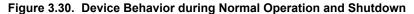
3.8 Layout Considerations

It is most important to minimize ringing in the drive path and noise on the Si823x VDD lines. Care must be taken to minimize parasitic inductance in these paths by locating the Si823x as close to the device it is driving as possible. In addition, the VDD supply and ground trace paths must be kept short. For this reason, the use of power and ground planes is highly recommended. A split ground plane system having separate ground and VDD planes for power devices and small signal components provides the best overall noise performance.

3.9 Undervoltage Lockout Operation

Device behavior during start-up, normal operation and shutdown is shown in Figure 3.30 Device Behavior during Normal Operation and Shutdown on page 21, where UVLO+ and UVLO- are the positive-going and negative-going thresholds respectively. Note that outputs VOA and VOB default low when input side power supply (VDDI) is not present.


3.9.1 Device Startup


Outputs VOA and VOB are held low during power-up until VDD is above the UVLO threshold for time period tSTART. Following this, the outputs follow the states of inputs VIA and VIB.

3.9.2 Undervoltage Lockout

Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below its specified operating circuits range. The input (control) side, Driver A and Driver B, each have their own undervoltage lockout monitors.

The Si823x input side enters UVLO when VDDI \leq VDDI_{UV-}, and exits UVLO when VDDI > VDDI_{UV+}. The driver outputs, VOA and VOB, remain low when the input side of the Si823x is in UVLO and their respective VDD supply (VDDA, VDDB) is within tolerance. Each driver output can enter or exit UVLO independently. For example, VOA unconditionally enters UVLO when VDDA falls below VDDA_{UV-} and exits UVLO when VDDA rises above VDDA_{UV+}.

3.9.3 Undervoltage Lockout (UVLO)

The UVLO circuit unconditionally drives VO low when VDD is below the lockout threshold. Upon power up, the Si823x is maintained in UVLO until VDD rises above VDD_{UV+}. During power down, the Si823x enters UVLO when VDD falls below the UVLO threshold plus hysteresis (i.e., VDD \leq VDD_{UV+} – VDD_{HYS}).

3.9.4 Control Inputs

VIA, VIB, and PWM inputs are high-true, TTL level-compatible logic inputs. A logic high signal on VIA or VIB causes the corresponding output to go high. For PWM input versions (Si8231/4), VOA is high and VOB is low when the PWM input is high, and VOA is low and VOB is high when the PWM input is low.

3.9.5 Disable Input

When brought high, the DISABLE input unconditionally drives VOA and VOB low regardless of the states of VIA and VIB. Device operation terminates within tSD after DISABLE = V_{IH} and resumes within tRESTART after DISABLE = V_{IL} . The DISABLE input has no effect if VDDI is below its UVLO level (i.e., VOA, VOB remain low).

3.10 Programmable Dead Time and Overlap Protection

All high-side/low-side drivers (Si8230/1/3/4) include programmable overlap protection to prevent outputs VOA and VOB from being high at the same time. These devices also include programmable dead time, which adds a user-programmable delay between transitions of VOA and VOB. When enabled, dead time is present on all transitions, even after overlap recovery. The amount of dead time delay (DT) is programmed by a single resistor (RDT) connected from the DT input to ground per Equation 5. Note that the dead time pin can be tied to VDDI or left floating to provide a nominal dead time at approximately 400 ps.

DT ≈ 10 × RDT

where:

DT = dead time (ns) and

RDT = dead time programing resistor (k Ω)

Equation 5

The device driving VIA and VIB should provide a minimum dead time of TDD to avoid activating overlap protection. Input/output timing waveforms for the two-input drivers are shown in Figure 3.31 Input / Output Waveforms for High-Side / Low-Side Two-Input Drivers on page 23, and dead time waveforms are shown in Figure 3.32 Dead Time Waveforms for High-Side / Low-Side Two-input Drivers on page 24.

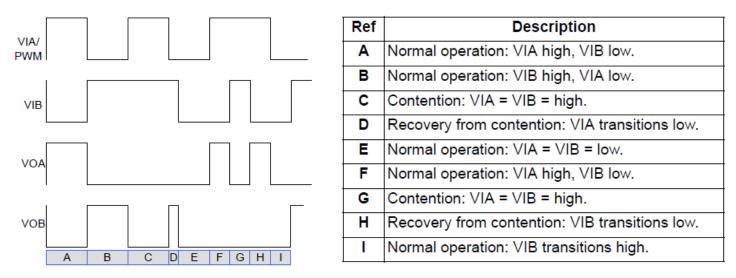
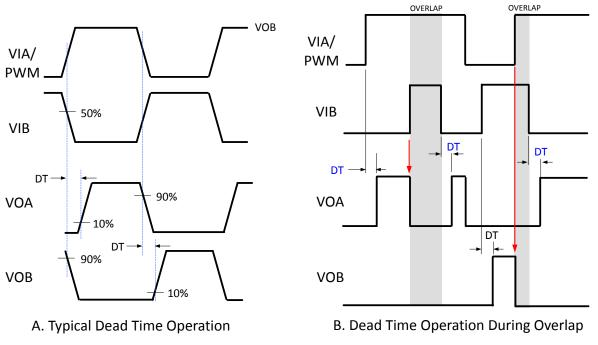
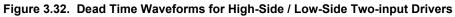




Figure 3.31. Input / Output Waveforms for High-Side / Low-Side Two-Input Drivers

4. Electrical Specifications

Table 4.1. Electrical Characteristics¹

2.7 V < VDDI < 5.5 V, VDDA = VDDB = 12 V or 15 V, TA = -40 to +125 °C, Typical specs at 25 °C, T_J = -40 to +150 °C

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
DC Specifications						
Input-side Power Supply	VDDI	Si8230/1/2/3/4/5	4.5		5.5	V
Voltage		Si8237/8	2.7	_	5.5	
Driver Supply Voltage	VDDA, VDDB	Voltage between VDDA and GNDA, and VDDB and GNDB (See 2. Ordering Guide)	6.5	_	24	V
Input Supply Quiescent	IDDI(Q)	Si8230/2/3/5/7/8	_	2	3	mA
Current		Si8231/4	_	3.5	5	mA
Output Supply Quiescent Current	IDDA(Q), IDDB(Q)	Current per channel	—		3.0	mA
Input Supply Active Current	IDDI	Input freq = 500 kHz, no load	_	3.5		mA
Output Supply Active Current	IDDA	Current per channel with	_	6	_	mA
	IDDB	Input freq = 500 kHz, no load				
Input Pin Leakage Current	IVIA, IVIB, IPWM		-10	_	+10	µA dc
Input Pin Leakage Current (Si8230/1/2/3/4/5)	IDISABLE		-10	_	+10	µA dc
Input Pin Leakage Current (Si8237/8)			-1000	+1000		-
Logic High Input Threshold	VIH		2.0	_	_	V
Logic Low Input Threshold	VIL		_	_	0.8	V
Input Hysteresis	VI _{HYST}	Si8230/1/2/3/4/5/7/8	400	450	_	mV
Logic High Output Voltage	VOAH, VOBH	IOA, IOB = -1 mA	(VDDA / VDDB) — 0.04	_	_	V
Logic Low Output Voltage	VOAL, VOBL	IOA, IOB = 1 mA	_	_	0.04	V
Output Short-Circuit Pulsed Sink Current	IOA(SCL), IOB(SCL)	Si8230/1/2/7, Figure 4.1 IOL Sink Current Test Circuit on page 28	-	0.5	_	A
		Si8233/4/5/8, Figure 4.1 IOL Sink Current Test Circuit on page 28	-	4.0	_	A
Output Short-Circuit Pulsed Source Current	IOA(SCH), IOB(SCH)	Si8230/1/2/7, Figure 4.2 IOH Source Current Test Circuit on page 28	-	0.25	_	A
		Si8233/4/5/8, Figure 4.2 IOH Source Current Test Circuit on page 28	-	2.0	_	A