# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



# Si8440/41/42/45



# LOW-POWER QUAD-CHANNEL DIGITAL ISOLATOR

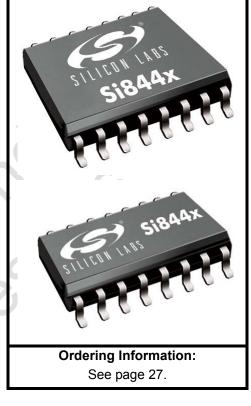
#### Features

- High-speed operation • DC to 150 Mbps
- No start-up initialization required
- Wide Operating Supply Voltage: 2.70-5.5 V
- Wide Operating Supply Voltage: 2.70-5.5V
- Ultra low power (typical) 5 V Operation:
  - < 1.6 mA per channel at 1 Mbps</li>
  - < 6 mA per channel at 100 Mbps AEC-Q100 gualified</li>
  - 2.70 V Operation:
  - < 1.4 mA per channel at 1 Mbps
  - < 4 mA per channel at 100 Mbps</li>
     RoHS-compliant packages
- High electromagnetic immunity

### Applications

- Industrial automation systems
- Hybrid electric vehicles
- Isolated switch mode supplies
- Safety Regulatory Approvals
- UL 1577 recognized
- Up to 2500 V<sub>RMS</sub> for 1 minute CSA component notice 5A
- approval
  - IEC 60950-1, 61010-1 (reinforced insulation)

### Description


Silicon Lab's family of ultra-low-power digital isolators are CMOS devices offering substantial data rate, propagation delay, power, size, reliability, and external BOM advantages when compared to legacy isolation technologies. The operating parameters of these products remain stable across wide temperature ranges throughout their service life. For ease of design, only VDD bypass capacitors are required.

Data rates up to 150 Mbps are supported, and all devices achieve worst-case propagation delays of less than 10 ns. All products are safety certified by UL, CSA, and VDE and support withstand voltages of up to 2.5 kVrms. These devices are available in 16-pin wide- and narrow-body SOIC packages.

Copyright © 2013 by Silicon Laboratories

- Up to 2500 V<sub>RMS</sub> isolation
- 60-year life at rated working voltage
- Precise timing (typical)
- <10 ns worst case</li>
- 1.5 ns pulse width distortion
- 0.5 ns channel-channel skew
- 2 ns propagation delay skew
- 6 ns minimum pulse width
- Transient Immunity 25 kV/µs
- Wide temperature range
- –40 to 125 °C at 150 Mbps
- - SOIC-16 wide body
- SOIC-16 narrow body
- Isolated ADC, DAC
- Power inverters
- Communications systems

VDE certification conformity



- Motor control

• IEC 60747-5-2 (VDE0884 Part 2) Not Recompesions



# TABLE OF CONTENTS

| <u>Section</u>                                                  | <u>Page</u> |
|-----------------------------------------------------------------|-------------|
| 1. Electrical Specifications                                    | 4           |
| 2. Functional Description                                       |             |
| 2.1. Theory of Operation                                        | 18          |
| 2.2. Eye Diagram                                                | 19          |
| 2.3. Device Operation                                           | 20          |
| 2.4. Layout Recommendations                                     | 22          |
| 2.5. Typical Performance Characteristics                        |             |
| 3. Errata and Design Migration Guidelines                       | 25          |
| 3.1. Enable Pin Causes Outputs to Go Low (Revision C Only)      | 25          |
| 3.2. Power Supply Bypass Capacitors (Revision C and Revision D) | 25          |
| 3.3. Latch Up Immunity (Revision C Only)                        | 25          |
| 3.3. Latch Up Immunity (Revision C Only)                        | 26          |
| <ul><li>5. Ordering Guide</li></ul>                             | 27          |
| 6. Package Outline: 16-Pin Wide Body SOIC                       | 29          |
| 7. Land Pattern: 16-Pin Wide-Body SOIC                          | 30          |
| 8. Package Outline: 16-Pin Narrow Body SOIC                     | 31          |
| 9. Land Pattern: 16-Pin Narrow Body SOIC                        | 33          |
| 10. Top Marking: 16-Pin Wide Body SOIC                          | 34          |
| 10.1. 16-Pin Wide Body SOIC Top Marking                         | 34          |
| 10.2. Top Marking Explanation                                   |             |
| 11. Top Marking: 16-Pin Narrow Body SOIC                        |             |
| 11.1. 16-Pin Narrow Body SOIC Top Marking                       |             |
| 11.2. Top Marking Explanation                                   | 35          |
| Document Change List                                            |             |
| Contact Information                                             | 38          |
|                                                                 |             |



# **1. Electrical Specifications**

# **Table 1. Recommended Operating Conditions**

| Parameter                                                                                                                                | Symbol           | Test Condition       | Min  | Тур | Max | Unit |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|------|-----|-----|------|--|--|--|
| Ambient Operating Temperature*                                                                                                           | T <sub>A</sub>   | 150 Mbps, 15 pF, 5 V | -40  | 25  | 125 | °C   |  |  |  |
| Supply Voltage                                                                                                                           | V <sub>DD1</sub> |                      | 2.70 | —   | 5.5 | V    |  |  |  |
|                                                                                                                                          | V <sub>DD2</sub> |                      | 2.70 | —   | 5.5 | V    |  |  |  |
| *Note: The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels, and supply voltage. |                  |                      |      |     |     |      |  |  |  |

# Table 2. Absolute Maximum Ratings<sup>1</sup>

| Parameter                                | Symbol                              | Min  | Тур | Max                   | Unit             |
|------------------------------------------|-------------------------------------|------|-----|-----------------------|------------------|
| Storage Temperature <sup>2</sup>         | T <sub>STG</sub>                    | -65  | 6   | 150                   | °C               |
| Ambient Temperature Under Bias           | T <sub>A</sub>                      | -40  |     | 125                   | °C               |
| Supply Voltage (Revision C) <sup>3</sup> | V <sub>DD1</sub> , V <sub>DD2</sub> | -0.5 | —   | 5.75                  | V                |
| Supply Voltage (Revision D) <sup>3</sup> | V <sub>DD1</sub> , V <sub>DD2</sub> | -0.5 | 2 – | 6.0                   | V                |
| Input Voltage                            | VI                                  | -0.5 | —   | V <sub>DD</sub> + 0.5 | V                |
| Output Voltage                           | Vo                                  | -0.5 | —   | V <sub>DD</sub> + 0.5 | V                |
| Output Current Drive Channel             | Ι <sub>Ο</sub>                      | —    | —   | 10                    | mA               |
| Lead Solder Temperature (10 s)           |                                     | —    | —   | 260                   | °C               |
| Maximum Isolation Voltage (1 s)          |                                     | _    | —   | 3600                  | V <sub>RMS</sub> |
| Neteri                                   |                                     | •    | •   | •                     |                  |

Notes:

1. Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may degrade performance.

2. VDE certifies storage temperature from -40 to 150 °C.

3. See "5. Ordering Guide" on page 27 for more information.



#### **Table 3. Electrical Characteristics**

(V<sub>DD1</sub> = 5 V ±10%, V<sub>DD2</sub> = 5 V ±10%, T<sub>A</sub> = -40 to 125 °C; applies to narrow and wide-body SOIC packages)

| Parameter                     | Symbol           | Test Condition                     | Min                      | Тур         | Max    | Unit |
|-------------------------------|------------------|------------------------------------|--------------------------|-------------|--------|------|
| High Level Input Voltage      | V <sub>IH</sub>  |                                    | 2.0                      | _           | —      | V    |
| Low Level Input Voltage       | V <sub>IL</sub>  |                                    | —                        |             | 0.8    | V    |
| High Level Output Voltage     | V <sub>OH</sub>  | loh = –4 mA                        | $V_{DD1}, V_{DD2} - 0.4$ | 4.8         |        | V    |
| Low Level Output Voltage      | V <sub>OL</sub>  | lol = 4 mA                         | —                        | 0.2         | 0.4    | V    |
| Input Leakage Current         | ١L               |                                    |                          | _           | ±10    | μA   |
| Output Impedance <sup>1</sup> | Z <sub>O</sub>   |                                    | _                        | 85          |        | Ω    |
| Enable Input High Current     | I <sub>ENH</sub> | V <sub>ENx</sub> = V <sub>IH</sub> | - 0                      | 2.0         |        | μA   |
| Enable Input Low Current      | I <sub>ENL</sub> | V <sub>ENx</sub> = V <sub>IL</sub> |                          | 2.0         |        | μA   |
|                               |                  | Current (All inputs                | 0 V or at Supply)        |             | I      |      |
| Si8440Ax, Bx and Si8445Bx     |                  |                                    |                          | 6           |        |      |
| V <sub>DD1</sub>              |                  | All inputs 0 DC                    | —                        | 1.5         | 2.3    | mA   |
| V <sub>DD2</sub>              |                  | All inputs 0 DC                    |                          | 2.5         | 3.8    |      |
| V <sub>DD1</sub>              |                  | All inputs 1 DC                    |                          | 5.7         | 8.6    |      |
| V <sub>DD2</sub>              |                  | All inputs 1 DC                    | —                        | 2.6         | 3.9    |      |
| Si8441Ax, Bx                  |                  |                                    |                          |             |        |      |
| V <sub>DD1</sub>              |                  | All inputs 0 DC                    |                          | 1.8         | 2.7    | mA   |
| V <sub>DD2</sub>              |                  | All inputs 0 DC                    | +                        | 2.5         | 3.8    |      |
| V <sub>DD1</sub>              |                  | All inputs 1 DC                    |                          | 4.9         | 7.4    |      |
| V <sub>DD2</sub>              |                  | All inputs 1 DC                    | —                        | 3.6         | 5.4    |      |
| Si8442Ax, Bx                  |                  |                                    |                          |             |        |      |
| V <sub>DD1</sub>              |                  | All inputs 0 DC                    |                          | 2.3         | 3.5    | mA   |
| V <sub>DD2</sub>              |                  | All inputs 0 DC                    | _                        | 2.3         | 3.5    |      |
| V <sub>DD1</sub>              |                  | All inputs 1 DC                    |                          | 4.5         | 6.8    |      |
| V <sub>DD2</sub>              |                  | All inputs 1 DC                    | —                        | 4.5         | 6.8    |      |
| 1 Mbps Supply Cur             | rent (All in     | outs = 500 kHz squa                | are wave, CI = 15 p      | F on all ou | tputs) | 1    |
| Si8440Ax, Bx and Si8445Bx     |                  |                                    |                          |             |        |      |
| V <sub>DD1</sub>              |                  |                                    | —                        | 3.6         | 5.4    | mA   |
| V <sub>DD2</sub>              |                  |                                    | —                        | 3.0         | 3.9    |      |
| Si8441Ax, Bx                  |                  |                                    |                          |             |        |      |
| V <sub>DD1</sub>              |                  |                                    | —                        | 3.5         | 5.3    | mA   |
| V <sub>DD2</sub>              |                  |                                    | —                        | 3.4         | 5.1    |      |
| Si8442Ax, Bx                  |                  |                                    |                          |             |        |      |
| V <sub>DD1</sub>              |                  |                                    | —                        | 3.6         | 5.4    | mA   |
| V <sub>DD2</sub>              |                  |                                    | _                        | 3.6         | 5.4    |      |
| Notes:                        | 1                |                                    | 1                        |             | 1      | 1    |

**1.** The nominal output impedance of an isolator driver channel is approximately 85  $\Omega$ , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.

2. t<sub>PSK(P-P)</sub> is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.

3. See "3. Errata and Design Migration Guidelines" on page 25 for more details.



# Table 3. Electrical Characteristics (Continued)

 $(V_{DD1} = 5 V \pm 10\%, V_{DD2} = 5 V \pm 10\%, T_A = -40$  to 125 °C; applies to narrow and wide-body SOIC packages)

| Parameter                            | Symbol                              | Test Condition     | Min              | Тур            | Max          | Unit  |
|--------------------------------------|-------------------------------------|--------------------|------------------|----------------|--------------|-------|
| 10 Mbps Supply                       | Current (All in                     | nputs = 5 MHz squa | re wave, CI = 15 | pF on all out  | puts)        |       |
| Si8440Bx, Si8445Bx                   |                                     |                    |                  |                |              |       |
| V <sub>DD1</sub>                     |                                     |                    | —                | 3.6            | 5.4          | mA    |
| V <sub>DD2</sub>                     |                                     |                    | —                | 4.0            | 5.6          |       |
| Si8441Bx                             |                                     |                    |                  | - <b>-</b>     |              |       |
| V <sub>DD1</sub>                     |                                     |                    | _                | 3.7<br>4.1     | 5.5<br>5.7   | mA    |
| V <sub>DD2</sub><br>Si8442Bx         |                                     |                    |                  | 4.1            | 5.7          |       |
| <b>518442БХ</b><br>V <sub>DD1</sub>  |                                     |                    | - 0              | 4.2            | 5.9          | mA    |
| V <sub>DD2</sub>                     |                                     |                    |                  | 4.2            | 5.9          | 110 ( |
|                                      | Current (All in                     | nputs = 50 MHz squ | are wave. CI = 1 | 5 pF on all ou | utputs)      |       |
| Si8440Bx, Si8445Bx                   |                                     |                    |                  |                | ,            |       |
| V <sub>DD1</sub>                     |                                     |                    | —                | 3.8            | 5.7          | mA    |
| V <sub>DD2</sub>                     |                                     |                    | $\mathbf{O}$ – . | 19.4           | 24.3         |       |
| Si8441Bx                             |                                     |                    | • • •            |                |              |       |
| V <sub>DD1</sub>                     |                                     |                    | _                | 8.0            | 10           | mA    |
| V <sub>DD2</sub>                     |                                     |                    | 6                | 15.8           | 19.8         |       |
| Si8442Bx                             |                                     |                    | 0.               | 44.0           | 44.0         |       |
| V <sub>DD1</sub><br>V <sub>DD2</sub> |                                     |                    |                  | 11.8<br>11.8   | 14.8<br>14.8 | mA    |
| VDD2                                 |                                     | Timing Characteris | tice             | 11.0           | 14.0         |       |
| Si844xAx                             |                                     | Timing Characteris | Sucs             |                |              |       |
|                                      | <b>N</b> Y                          |                    |                  |                | 4.0          | Maria |
| Maximum Data Rate                    |                                     |                    | 0                | —              | 1.0          | Mbps  |
| Minimum Pulse Width                  |                                     |                    | —                | —              | 250          | ns    |
| Propagation Delay                    | t <sub>PHL</sub> , t <sub>PLH</sub> | See Figure 2       | —                | —              | 35           | ns    |
| Pulse Width Distortion               | PWD                                 | See Figure 2       | —                | —              | 25           | ns    |
| t <sub>PLH</sub> - t <sub>PHL</sub>  |                                     | •                  |                  |                |              |       |
| Propagation Delay Skew <sup>2</sup>  | t <sub>PSK(P-P)</sub>               |                    | —                | —              | 40           | ns    |
| Channel-Channel Skew                 | t <sub>PSK</sub>                    |                    |                  | —              | 35           | ns    |
| Notes:                               |                                     |                    |                  |                |              |       |

impedance PCB traces.

2. t<sub>PSK(P-P)</sub> is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.

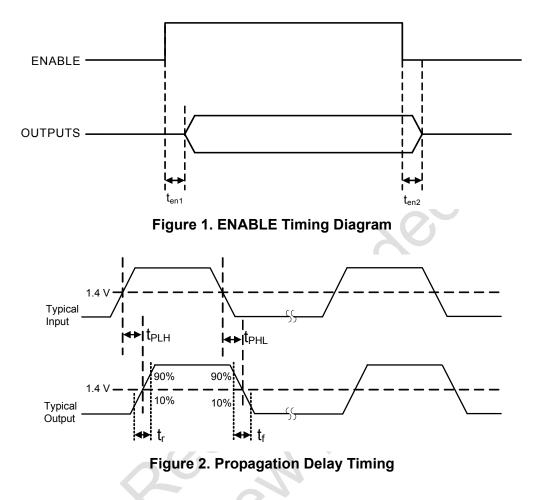
3. See "3. Errata and Design Migration Guidelines" on page 25 for more details.



# Table 3. Electrical Characteristics (Continued)

(V<sub>DD1</sub> = 5 V ±10%, V<sub>DD2</sub> = 5 V ±10%, T<sub>A</sub> = -40 to 125 °C; applies to narrow and wide-body SOIC packages)

| Parameter                                                      | Symbol                              | Test Condition                         | Min   | Тур | Мах | Unit  |
|----------------------------------------------------------------|-------------------------------------|----------------------------------------|-------|-----|-----|-------|
| Si844xBx                                                       |                                     |                                        | I     |     |     |       |
| Maximum Data Rate                                              |                                     |                                        | 0     | —   | 150 | Mbps  |
| Minimum Pulse Width                                            |                                     |                                        | —     |     | 6.0 | ns    |
| Propagation Delay                                              | t <sub>PHL</sub> , t <sub>PLH</sub> | See Figure 2                           | 3.0   | 6.0 | 9.5 | ns    |
| Pulse Width Distortion<br> t <sub>PLH</sub> - t <sub>PHL</sub> | PWD                                 | See Figure 2                           | -     | 1.5 | 2.5 | ns    |
| Propagation Delay Skew <sup>2</sup>                            | t <sub>PSK(P-P)</sub>               |                                        | —     | 2.0 | 3.0 | ns    |
| Channel-Channel Skew                                           | t <sub>PSK</sub>                    |                                        | - 0   | 0.5 | 1.8 | ns    |
| All Models                                                     | I                                   |                                        |       |     |     |       |
| Output Rise Time                                               | t <sub>r</sub>                      | C <sub>L</sub> = 15 pF<br>See Figure 2 | ~~    | 3.8 | 5.0 | ns    |
| Output Fall Time                                               | t <sub>f</sub>                      | C <sub>L</sub> = 15 pF<br>See Figure 2 | 0-    | 2.8 | 3.7 | ns    |
| Common Mode Transient<br>Immunity                              | CMTI                                | $V_{I} = V_{DD} \text{ or } 0 V$       | · → Q | 25  | —   | kV/µs |
| Enable to Data Valid <sup>3</sup>                              | t <sub>en1</sub>                    | See Figure 1                           |       | 5.0 | 8.0 | ns    |
| Enable to Data Tri-State <sup>3</sup>                          | t <sub>en2</sub>                    | See Figure 1                           |       | 7.0 | 9.2 | ns    |
| Start-up Time <sup>3,4</sup>                                   | t <sub>SU</sub>                     |                                        | _     | 15  | 40  | μs    |
| Notoci                                                         | · · · · · ·                         |                                        |       |     |     |       |


Notes:

The nominal output impedance of an isolator driver channel is approximately 85 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.

2. t<sub>PSK(P-P)</sub> is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.

3. See "3. Errata and Design Migration Guidelines" on page 25 for more details.





)~



#### **Table 4. Electrical Characteristics**

(V<sub>DD1</sub> = 3.3 V ±10%, V<sub>DD2</sub> = 3.3 V ±10%, T<sub>A</sub> = -40 to 125 °C; applies to narrow and wide-body SOIC packages)

|                                 |                         |                                    | -                                        | -             |              |           |
|---------------------------------|-------------------------|------------------------------------|------------------------------------------|---------------|--------------|-----------|
| Parameter                       | Symbol                  | Test Condition                     | Min                                      | Тур           | Мах          | Unit      |
| High Level Input Voltage        | V <sub>IH</sub>         |                                    | 2.0                                      | _             | _            | V         |
| Low Level Input Voltage         | V <sub>IL</sub>         |                                    | —                                        |               | 0.8          | V         |
| High Level Output Voltage       | V <sub>OH</sub>         | loh = –4 mA                        | V <sub>DD1</sub> ,V <sub>DD2</sub> – 0.4 | 3.1           |              | V         |
| Low Level Output Voltage        | V <sub>OL</sub>         | lol = 4 mA                         | —                                        | 0.2           | 0.4          | V         |
| Input Leakage Current           |                         |                                    | -                                        | _             | ±10          | μA        |
| Output Impedance <sup>1</sup>   | Z <sub>O</sub>          |                                    |                                          | 85            |              | Ω         |
| Enable Input High Current       | I <sub>ENH</sub>        | V <sub>ENx</sub> = V <sub>IH</sub> |                                          | 2.0           | _            | μA        |
| Enable Input Low Current        | I <sub>ENL</sub>        | $V_{ENx} = V_{IL}$                 |                                          | 2.0           |              | μA        |
|                                 |                         | urrent (All inputs 0               | V or at supply)                          |               |              |           |
| Si8440Ax, Bx and Si8445Bx       |                         |                                    |                                          |               |              |           |
| V <sub>DD1</sub>                |                         | All inputs 0 DC                    |                                          | 1.5           | 2.3          | mA        |
| V <sub>DD2</sub>                |                         | All inputs 0 DC                    |                                          | 2.5           | 3.8          |           |
| V <sub>DD1</sub>                |                         | All inputs 1 DC                    |                                          | 5.7           | 8.6          |           |
| V <sub>DD2</sub>                |                         | All inputs 1 DC                    |                                          | 2.6           | 3.9          |           |
| Si8441Ax, Bx                    |                         |                                    |                                          |               |              |           |
| V <sub>DD1</sub>                |                         | All inputs 0 DC                    |                                          | 1.8           | 2.7          | mA        |
| V <sub>DD2</sub>                |                         | All inputs 0 DC                    |                                          | 2.5           | 3.8          |           |
| V <sub>DD1</sub>                |                         | All inputs 1 DC                    | —                                        | 4.9           | 7.4          |           |
| V <sub>DD2</sub>                |                         | All inputs 1 DC                    | ) –                                      | 3.6           | 5.4          |           |
| Si8442Ax, Bx                    |                         |                                    |                                          |               |              |           |
| V <sub>DD1</sub>                |                         | All inputs 0 DC                    | —                                        | 2.3           | 3.5          | mA        |
| V <sub>DD2</sub>                |                         | All inputs 0 DC                    | —                                        | 2.3           | 3.5          |           |
| V <sub>DD1</sub>                |                         | All inputs 1 DC                    | —                                        | 4.5           | 6.8          |           |
| V <sub>DD2</sub>                |                         | All inputs 1 DC                    | —                                        | 4.5           | 6.8          |           |
| 1 Mbps Supply Cu                | r <b>rent</b> (All inpu | its = 500 kHz squai                | re wave, CI = 15 pF                      | on all out    | puts)        |           |
| Si8440Ax, Bx and Si8445Bx       |                         |                                    |                                          |               |              |           |
| V <sub>DD1</sub>                |                         |                                    | —                                        | 3.6           | 5.4          | mA        |
| V <sub>DD2</sub>                |                         |                                    | —                                        | 3.0           | 3.9          |           |
| Si8441Ax, Bx                    |                         |                                    |                                          |               |              |           |
| V <sub>DD1</sub>                |                         |                                    | —                                        | 3.5           | 5.3          | mA        |
| V <sub>DD2</sub>                |                         |                                    | —                                        | 3.4           | 5.1          |           |
| Si8442Ax, Bx                    |                         |                                    |                                          |               |              |           |
| V <sub>DD1</sub>                |                         |                                    | -                                        | 3.6           | 5.4          | mA        |
| V <sub>DD2</sub>                |                         |                                    | -                                        | 3.6           | 5.4          | 1         |
| Notes:                          |                         |                                    |                                          |               |              | •         |
| 1. The nominal output impedance | e of an isolator        | driver channel is app              | roximately 85 Ω, ±40%                    | 6, which is a | a combinatio | on of the |

 The nominal output impedance of an isolator driver channel is approximately 85 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.

2. t<sub>PSK(P-P)</sub> is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.

3. See "3. Errata and Design Migration Guidelines" on page 25 for more details.



# Si8440/41/42/45

# Table 4. Electrical Characteristics (Continued)

 $(V_{DD1} = 3.3 \text{ V} \pm 10\%, V_{DD2} = 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 125 \text{ °C}; \text{ applies to narrow and wide-body SOIC packages})$ 

| Parameter                            | Symbol                             | Test Condition    | Min                  | Тур           | Мах         | Unit     |
|--------------------------------------|------------------------------------|-------------------|----------------------|---------------|-------------|----------|
| 10 Mbps Supply                       | Current (All inpu                  | ts = 5 MHz square | e wave, CI = 15 p    | oF on all out | puts)       |          |
| Si8440Bx, Si8445Bx                   |                                    |                   |                      |               |             |          |
| V <sub>DD1</sub>                     |                                    |                   | —                    | 3.6           | 5.4         | mA       |
| V <sub>DD2</sub>                     |                                    |                   |                      | 4.0           | 5.6         |          |
| Si8441Bx                             |                                    |                   |                      |               |             |          |
| V <sub>DD1</sub>                     |                                    |                   | _                    | 3.7           | 5.5         | mA       |
| V <sub>DD2</sub>                     |                                    |                   |                      | 4.1           | 5.7         |          |
| Si8442Bx                             |                                    |                   |                      |               |             |          |
| V <sub>DD1</sub>                     |                                    |                   | $\overline{\langle}$ | 4.2           | 5.9         | mA       |
| V <sub>DD2</sub>                     |                                    |                   |                      | 4.2           | 5.9         |          |
| 100 Mbps Supply                      | Current (All inpu                  | ts = 50 MHz squa  | re wave, CI = 15     | pF on all ou  | utputs)     |          |
| Si8440Bx, Si8445Bx                   |                                    |                   |                      | G             |             |          |
| V <sub>DD1</sub>                     |                                    |                   |                      | 3.6           | 5.5         | mA       |
| V <sub>DD2</sub>                     |                                    |                   | 0 -                  | 14            | 17.5        | _        |
| Si8441Bx                             |                                    |                   | • • C                |               | 0.0         |          |
| V <sub>DD1</sub><br>V <sub>DD2</sub> |                                    |                   |                      | 6.4<br>11.4   | 8.0<br>14.5 | mA       |
|                                      |                                    |                   |                      | 11.7          | 14.5        |          |
| Si8442Bx                             |                                    |                   |                      | 8.6           | 10.8        | mA       |
| V <sub>DD1</sub><br>V <sub>DD2</sub> |                                    |                   |                      | 8.6           | 10.8        |          |
| • 002                                | Tin                                | ning Characterist |                      | 0.0           | 10.0        |          |
| Si844xAx                             |                                    | ing onaracteristi | 0.5                  |               |             |          |
|                                      | <u>NV</u>                          |                   |                      | 1             | 4.0         | N Ale as |
| Maximum Data Rate                    |                                    |                   | 0                    | _             | 1.0         | Mbp      |
| Minimum Pulse Width                  |                                    |                   | —                    | —             | 250         | ns       |
| Propagation Delay                    | t <sub>PHL</sub> ,t <sub>PLH</sub> | See Figure 2      |                      | —             | 35          | ns       |
| Pulse Width Distortion               | PWD                                | See Figure 2      | —                    | - 1           | 25          | ns       |
| t <sub>PLH</sub> - t <sub>PHL</sub>  |                                    |                   |                      |               |             |          |
| Propagation Delay Skew <sup>2</sup>  | t <sub>PSK(P-P)</sub>              |                   |                      | _             | 40          | ns       |
| Channel-Channel Skew                 | t <sub>PSK</sub>                   |                   | _                    |               | 35          | ns       |

The nominal output impedance of an isolator driver channel is approximately 85 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.

2. t<sub>PSK(P-P)</sub> is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.

- 3. See "3. Errata and Design Migration Guidelines" on page 25 for more details.
- 4. Start-up time is the time period from the application of power to valid data at the output.



### Table 4. Electrical Characteristics (Continued)

 $(V_{DD1} = 3.3 \text{ V} \pm 10\%, V_{DD2} = 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 125 \text{ °C}; \text{ applies to narrow and wide-body SOIC packages})$ 

| Parameter                                                      | Symbol                              | Test Condition                         | Min | Тур | Мах | Unit  |
|----------------------------------------------------------------|-------------------------------------|----------------------------------------|-----|-----|-----|-------|
| Si844xBx                                                       |                                     |                                        |     |     |     |       |
| Maximum Data Rate                                              |                                     |                                        | 0   | —   | 150 | Mbps  |
| Minimum Pulse Width                                            |                                     |                                        | —   | —   | 6.0 | ns    |
| Propagation Delay                                              | t <sub>PHL</sub> , t <sub>PLH</sub> | See Figure 2                           | 3.0 | 6.0 | 9.5 | ns    |
| Pulse Width Distortion<br> t <sub>PLH</sub> - t <sub>PHL</sub> | PWD                                 | See Figure 2                           | _   | 1.5 | 2.5 | ns    |
| Propagation Delay Skew <sup>2</sup>                            | t <sub>PSK(P-P)</sub>               |                                        | -   | 2.0 | 3.0 | ns    |
| Channel-Channel Skew                                           | t <sub>PSK</sub>                    |                                        | - 0 | 0.5 | 1.8 | ns    |
| All Models                                                     | ·                                   |                                        | Xe  |     |     |       |
| Output Rise Time                                               | t <sub>r</sub>                      | C <sub>L</sub> = 15 pF<br>See Figure 2 | ~~~ | 4.3 | 6.1 | ns    |
| Output Fall Time                                               | t <sub>f</sub>                      | C <sub>L</sub> = 15 pF<br>See Figure 2 | S   | 3.0 | 4.3 | ns    |
| Common Mode Transient<br>Immunity                              | CMTI                                | $V_{I} = V_{DD} \text{ or } 0 V$       |     | 25  | _   | kV/µs |
| Enable to Data Valid <sup>3</sup>                              | t <sub>en1</sub>                    | See Figure 1                           | 6   | 5.0 | 8.0 | ns    |
| Enable to Data Tri-State <sup>3</sup>                          | t <sub>en2</sub>                    | See Figure 1                           | 0-  | 7.0 | 9.2 | ns    |
| Start-up Time <sup>3,4</sup>                                   | t <sub>SU</sub>                     |                                        |     | 15  | 40  | μs    |

Notes:

The nominal output impedance of an isolator driver channel is approximately 85 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.

2. t<sub>PSK(P-P)</sub> is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.

3. See "3. Errata and Design Migration Guidelines" on page 25 for more details.



# Table 5. Electrical Characteristics<sup>1</sup>

(V<sub>DD1</sub> = 2.70 V, V<sub>DD2</sub> = 2.70 V, T<sub>A</sub> = -40 to 125 °C; applies to narrow and wide-body SOIC packages)

|                  | Test Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Тур          | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Uni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>IH</sub>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| V <sub>IL</sub>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| V <sub>OH</sub>  | loh = -4 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $V_{DD1}, V_{DD2} - 0.$<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| V <sub>OL</sub>  | lol = 4 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ١L               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | —            | ±10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Z <sub>O</sub>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85           | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| I <sub>ENH</sub> | V <sub>ENx</sub> = V <sub>IH</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0          | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| I <sub>ENL</sub> | V <sub>ENx</sub> = V <sub>IL</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0          | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C Supply Cu      | urrent (All inputs 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V or at supply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | All inputs 0 DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5          | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5          | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | All inputs 1 DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.7          | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | All inputs 1 DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.6          | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | All inputs 0 DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18           | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| h V              | All inputs 0 DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23           | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 111/-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| rent (All inpu   | ts = 500 kHz squar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e wave, CI = 15 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on all ou    | tputs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.0          | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ·                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.5          | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.4          | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.6          | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  | $VDD^{T} = 2.6 \text{ v and } VDL$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JZ = Z.6 V when the c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | operating te | mperature i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | r driver obennel is cara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ovimately 95 O + 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | which is a   | oomhinati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  | VIL         VOH         VOL         IL         ZO         IENH         IENL         OC Supply Cu         rent (All input         IENC         IENC         VOL         IENL         OC Supply Cu         IENC         IENL         IENL <td><math>V_{IL}</math> <math>V_{OH}</math> <math>loh = -4 \text{ mA}</math> <math>V_{OL}</math> <math>lol = 4 \text{ mA}</math> <math>I_L</math> <math>Z_O</math> <math>I_{ENH}</math> <math>V_{ENx} = V_{IH}</math> <math>I_{ENL}</math> <math>V_{ENx} = V_{IL}</math>         OC Supply Current (All inputs 0 DC All inputs 0 DC All inputs 1 DC C All inputs 1 DC All inputs 1 DC C All inputs 1 DC C All inputs 1 DC All inputs 1 DC C C C C C C C C C C C C C C C C C</td> <td>VIL      </td> <td>V<sub>IL</sub>             V<sub>OH</sub>         loh = -4 mA         V<sub>DD1</sub>, V<sub>DD2</sub> - 0.         2.3           V<sub>OL</sub>         lol = 4 mA          0.2           IL              Z<sub>O</sub>          85           IENH         VENX = VIH          2.0           VOC         VENX = VIH          2.0           VOC         Supply Current (All inputs 0 DC          1.5           All inputs 0 DC          2.6            All inputs 1 DC          2.6            All inputs 0 DC          1.8            All inputs 0 DC          1.8            All inputs 0 DC          2.5            All inputs 0 DC          2.3            All inputs 1 DC          3.6             3.6</td> <td>NIL         -         -         0.8           <math>V_{OH}</math>         loh = -4 mA         <math>V_{DD1}, V_{DD2} - 0.</math>         2.3         -           <math>V_{OL}</math>         lol = 4 mA         -         0.2         0.4           <math>I_L</math>         -         -         ±10           <math>Z_O</math>         -         85         -           <math>I_{ENH}</math> <math>V_{ENx} = V_{IH}</math>         -         2.0         -           <math>I_{ENL}</math> <math>V_{ENx} = V_{IL}</math>         -         2.0         -           OC         Supply Current (All inputs 0 V or at supply)         -         1.5         2.3           All inputs 0 DC         -         1.5         2.3         3.8           All inputs 0 DC         -         1.8         2.7           All inputs 0 DC         -         1.8         2.7           All inputs 0 DC         -         2.6         3.9           All inputs 0 DC         -         2.3         3.5           All inputs 1 DC         -         3.6         5.4           All inputs 1 DC         -         4.5         6.8           rent (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)         -         3.6         5.4           -</td> | $V_{IL}$ $V_{OH}$ $loh = -4 \text{ mA}$ $V_{OL}$ $lol = 4 \text{ mA}$ $I_L$ $Z_O$ $I_{ENH}$ $V_{ENx} = V_{IH}$ $I_{ENL}$ $V_{ENx} = V_{IL}$ OC Supply Current (All inputs 0 DC All inputs 0 DC All inputs 1 DC C All inputs 1 DC All inputs 1 DC C All inputs 1 DC C All inputs 1 DC All inputs 1 DC C C C C C C C C C C C C C C C C C | VIL          | V <sub>IL</sub> V <sub>OH</sub> loh = -4 mA         V <sub>DD1</sub> , V <sub>DD2</sub> - 0.         2.3           V <sub>OL</sub> lol = 4 mA          0.2           IL              Z <sub>O</sub> 85           IENH         VENX = VIH          2.0           VOC         VENX = VIH          2.0           VOC         Supply Current (All inputs 0 DC          1.5           All inputs 0 DC          2.6            All inputs 1 DC          2.6            All inputs 0 DC          1.8            All inputs 0 DC          1.8            All inputs 0 DC          2.5            All inputs 0 DC          2.3            All inputs 1 DC          3.6             3.6 | NIL         -         -         0.8 $V_{OH}$ loh = -4 mA $V_{DD1}, V_{DD2} - 0.$ 2.3         - $V_{OL}$ lol = 4 mA         -         0.2         0.4 $I_L$ -         -         ±10 $Z_O$ -         85         - $I_{ENH}$ $V_{ENx} = V_{IH}$ -         2.0         - $I_{ENL}$ $V_{ENx} = V_{IL}$ -         2.0         -           OC         Supply Current (All inputs 0 V or at supply)         -         1.5         2.3           All inputs 0 DC         -         1.5         2.3         3.8           All inputs 0 DC         -         1.8         2.7           All inputs 0 DC         -         1.8         2.7           All inputs 0 DC         -         2.6         3.9           All inputs 0 DC         -         2.3         3.5           All inputs 1 DC         -         3.6         5.4           All inputs 1 DC         -         4.5         6.8           rent (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)         -         3.6         5.4           - |

where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.

3.  $t_{PSK(P-P)}$  is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.

- 4. See "3. Errata and Design Migration Guidelines" on page 25 for more details.
- 5. Start-up time is the time period from the application of power to valid data at the output.



Table 5. Electrical Characteristics<sup>1</sup> (Continued) $(V_{DD1} = 2.70 \text{ V}, V_{DD2} = 2.70 \text{ V}, T_A = -40 \text{ to } 125 \text{ °C}; applies to narrow and wide-body SOIC packages)$ 

| Parameter                                                       | Symbol                             | Test Condition       | Min                 | Тур           | Max           | Unit     |
|-----------------------------------------------------------------|------------------------------------|----------------------|---------------------|---------------|---------------|----------|
| 10 Mbps Supply C                                                | urrent (All inp                    | uts = 5 MHz squar    | e wave, CI = 15 p   | F on all ou   | tputs)        |          |
| Si8440Bx, Si8445Bx                                              |                                    |                      |                     |               |               |          |
| V <sub>DD1</sub>                                                |                                    |                      | —                   | 3.6           | 5.4           | mA       |
| V <sub>DD2</sub>                                                |                                    |                      | —                   | 4.0           | 5.6           |          |
| Si8441Bx                                                        |                                    |                      |                     |               |               |          |
| V <sub>DD1</sub>                                                |                                    |                      |                     | 3.7           | 5.5           | mA       |
| V <sub>DD2</sub>                                                |                                    |                      | _                   | 4.1           | 5.7           |          |
| Si8442Bx                                                        |                                    |                      |                     |               |               |          |
| V <sub>DD1</sub>                                                |                                    |                      |                     | 4.2           | 5.9           | mA       |
| V <sub>DD2</sub>                                                |                                    |                      |                     | 4.2           | 5.9           |          |
| 100 Mbps Supply C                                               | urrent (All inp                    | uts = 50 MHz squa    | ire wave, CI = 15   | pF on all o   | utputs)       |          |
| Si8440Bx, Si8445Bx                                              |                                    |                      |                     | 6             |               |          |
| V <sub>DD1</sub>                                                |                                    |                      | —                   | 3.6           | 5.5           | mA       |
| V <sub>DD2</sub>                                                |                                    |                      |                     | 10.8          | 13.5          |          |
| Si8441Bx                                                        |                                    |                      |                     | 5.6           | 7.0           | mA       |
| V <sub>DD1</sub><br>V <sub>DD2</sub>                            |                                    |                      |                     | 9.3           | 11.6          | mA       |
| Si8442Bx                                                        |                                    |                      |                     | 0.0           | 11.0          |          |
| V <sub>DD1</sub>                                                |                                    |                      |                     | 7.2           | 9.0           | mA       |
| V <sub>DD2</sub>                                                |                                    |                      | _                   | 7.2           | 9.0           | 110/     |
| 002                                                             | Т                                  | iming Characterist   | ics                 |               |               |          |
| Si844xAx                                                        | - 0                                |                      |                     |               |               |          |
|                                                                 |                                    |                      | 0                   |               | 1.0           | Maria    |
| Maximum Data Rate                                               |                                    |                      | 0                   |               | 1.0           | Mbp      |
| Minimum Pulse Width                                             |                                    |                      | —                   | —             | 250           | ns       |
| Propagation Delay                                               | t <sub>PHL</sub> ,t <sub>PLH</sub> | See Figure 2         | —                   | —             | 35            | ns       |
| Pulse Width Distortion                                          | PWD                                | See Figure 2         | —                   | _             | 25            | ns       |
| It <sub>PLH</sub> - t <sub>PHL</sub>                            |                                    | ~                    |                     |               |               |          |
| Propagation Delay Skew <sup>3</sup>                             | t <sub>PSK(P-P)</sub>              |                      | —                   | —             | 40            | ns       |
| Channel-Channel Skew                                            | t <sub>PSK</sub>                   |                      | —                   | —             | 35            | ns       |
| 1. Specifications in this table a                               | ire also valid at \                | /DD1 = 2.6 V and VDI | D2 = 2.6 V when the | operating te  | mperature     | range is |
| constrained to $T_A = 0$ to 85                                  |                                    |                      |                     | ))/hishish    |               |          |
| 2. The nominal output impedation value of the on-chip series to |                                    |                      |                     |               |               |          |
| where transmission line effe                                    |                                    |                      |                     |               |               | louuo    |
| impedance PCB traces.                                           |                                    |                      |                     |               |               |          |
| <b>3.</b> $t_{PSK(P-P)}$ is the magnitude of                    |                                    |                      | mes measured betw   | een different | t units opera | ating at |
| the same supply voltages, I                                     |                                    |                      | ara dataila         |               |               |          |

- 4. See "3. Errata and Design Migration Guidelines" on page 25 for more details.
- 5. Start-up time is the time period from the application of power to valid data at the output.



# Table 5. Electrical Characteristics<sup>1</sup> (Continued)

 $(V_{DD1} = 2.70 \text{ V}, V_{DD2} = 2.70 \text{ V}, T_A = -40 \text{ to } 125 \text{ °C}; \text{ applies to narrow and wide-body SOIC packages})$ 

| Parameter                                    | Symbol                              | Test Condition                           | Min | Тур | Мах | Unit  |
|----------------------------------------------|-------------------------------------|------------------------------------------|-----|-----|-----|-------|
| Si844xBx                                     |                                     |                                          | I   |     | I   |       |
| Maximum Data Rate                            |                                     |                                          | 0   | —   | 150 | Mbps  |
| Minimum Pulse Width                          |                                     |                                          | —   | —   | 6.0 | ns    |
| Propagation Delay                            | t <sub>PHL</sub> , t <sub>PLH</sub> | See Figure 2                             | 3.0 | 6.0 | 9.5 | ns    |
| Pulse Width Distortion $ t_{PLH} - t_{PHL} $ | PWD                                 | See Figure 2                             | _   | 1.5 | 2.5 | ns    |
| Propagation Delay Skew <sup>3</sup>          | t <sub>PSK(P-P)</sub>               |                                          | -   | 2.0 | 3.0 | ns    |
| Channel-Channel Skew                         | t <sub>PSK</sub>                    |                                          |     | 0.5 | 1.8 | ns    |
| All Models                                   |                                     |                                          |     |     |     | •     |
| Output Rise Time                             | t <sub>r</sub>                      | C <sub>L</sub> = 15 pF<br>See Figure 2   | ~~  | 4.8 | 6.5 | ns    |
| Output Fall Time                             | t <sub>f</sub>                      | C <sub>L</sub> = 15 pF<br>See Figure 2   | 2-7 | 3.2 | 4.6 | ns    |
| Common Mode Transient<br>Immunity            | CMTI                                | $V_{I} = V_{DD} \text{ or } 0 \text{ V}$ | ÷.O | 25  | —   | kV/µs |
| Enable to Data Valid <sup>4</sup>            | t <sub>en1</sub>                    | See Figure 1                             | 6   | 5.0 | 8.0 | ns    |
| Enable to Data Tri-State <sup>4</sup>        | t <sub>en2</sub>                    | See Figure 1                             | 0-  | 7.0 | 9.2 | ns    |
| Start-up Time <sup>4,5</sup>                 | t <sub>SU</sub>                     | U C                                      | _   | 15  | 40  | μs    |

Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is constrained to T<sub>A</sub> = 0 to 85 °C.

2. The nominal output impedance of an isolator driver channel is approximately 85 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.

3. t<sub>PSK(P-P)</sub> is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.

4. See "3. Errata and Design Migration Guidelines" on page 25 for more details.



### Table 6. Regulatory Information\*

# CSA

The Si84xx is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.

61010-1: Up to 600 V<sub>RMS</sub> reinforced insulation working voltage; up to 600 V<sub>RMS</sub> basic insulation working voltage. 60950-1: Up to 130 V<sub>RMS</sub> reinforced insulation working voltage; up to 1000 V<sub>RMS</sub> basic insulation working voltage.

#### VDE

The Si84xx is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.

60747-5-2: Up to 560  $V_{\text{peak}}$  for basic insulation working voltage.

UL

The Si84xx is certified under UL1577 component recognition program. For more details, see File E257455.

Rated up to 2500  $V_{RMS}$  isolation voltage for basic insulation.

\*Note: Regulatory Certifications apply to 2.5 kV<sub>RMS</sub> rated devices which are production tested to 3.0 kV<sub>RMS</sub> for 1 sec. For more information, see "5. Ordering Guide" on page 27.

## Table 7. Insulation and Safety-Related Specifications

|                                                   |                 |                | Val              | ue               |                  |
|---------------------------------------------------|-----------------|----------------|------------------|------------------|------------------|
| Parameter                                         | Symbol          | Test Condition | WB<br>SOIC-16    | NB<br>SOIC-16    | Unit             |
| Nominal Air Gap (Clearance) <sup>1</sup>          | L(IO1)          |                | 8.0              | 4.9              | mm               |
| Nominal External Tracking (Creepage) <sup>1</sup> | L(IO2)          |                | 8.0              | 4.01             | mm               |
| Minimum Internal Gap (Internal Clearance)         |                 |                | 0.008            | 0.008            | mm               |
| Tracking Resistance<br>(Proof Tracking Index)     | PTI             | IEC60112       | 600              | 600              | V <sub>RMS</sub> |
| Erosion Depth                                     | ED              |                | 0.040            | 0.019            | mm               |
| Resistance (Input-Output) <sup>2</sup>            | R <sub>IO</sub> |                | 10 <sup>12</sup> | 10 <sup>12</sup> | Ω                |
| Capacitance (Input-Output) <sup>2</sup>           | C <sub>IO</sub> | f = 1 MHz      | 2.0              | 2.0              | pF               |
| Input Capacitance <sup>3</sup>                    | CI              |                | 4.0              | 4.0              | pF               |

Notes:

 The values in this table correspond to the nominal creepage and clearance values as detailed in "6. Package Outline: 16-Pin Wide Body SOIC" and "8. Package Outline: 16-Pin Narrow Body SOIC". VDE certifies the clearance and creepage limits as 4.7 mm minimum for the NB SOIC-16 package and 8.5 mm minimum for the WB SOIC-16 package. UL does not impose a clearance and creepage minimum for component level certifications. CSA certifies the clearance and creepage limits as 3.9 mm minimum for the NB SOIC-16 package and 7.6 mm minimum for the WB SOIC-16 package.

To determine resistance and capacitance, the Si84xx is converted into a 2-terminal device. Pins 1–8 are shorted together to form the first terminal and pins 9–16 are shorted together to form the second terminal. The parameters are then measured between these two terminals.

**3.** Measured from input pin to ground.



# Table 8. IEC 60664-1 (VDE 0844 Part 2) Ratings

| Parameter                   | Test Condition                                   | Specification |
|-----------------------------|--------------------------------------------------|---------------|
| Basic Isolation Group       | Material Group                                   | I             |
|                             | Rated Mains Voltages ≤ 150 V <sub>RMS</sub>      | I-IV          |
| Installation Obsertion      | Rated Mains Voltages ≤ 300 V <sub>RMS</sub>      | I-III         |
| Installation Classification | Rated Mains Voltages ≤ 400 V <sub>RMS</sub>      | I-II          |
|                             | Rated Mains Voltages $\leq$ 600 V <sub>RMS</sub> | -             |

# Table 9. IEC 60747-5-2 Insulation Characteristics for Si84xxxB\*

| Parameter                                                 | Symbol            | Test Condition                                                                                                                            | Characteristic       | Unit   |
|-----------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------|
| Maximum Working Insulation Voltage                        | V <sub>IORM</sub> |                                                                                                                                           | 560                  | V peak |
| Input to Output Test Voltage                              | V <sub>PR</sub>   | Method b1<br>(V <sub>IORM</sub> x 1.875 = V <sub>PR</sub> , 100%<br>Production Test, t <sub>m</sub> = 1 sec,<br>Partial Discharge < 5 pC) | 1050                 | V peak |
| Transient Overvoltage                                     | V <sub>IOTM</sub> | t = 60 sec                                                                                                                                | 4000                 | V peak |
| Pollution Degree (DIN VDE 0110, Table 1)                  |                   |                                                                                                                                           | 2                    |        |
| Insulation Resistance at $T_S$ , $V_{IO}$ = 500 V         | R <sub>S</sub>    |                                                                                                                                           | >10 <sup>9</sup>     | Ω      |
| *Note: Maintenance of the safety data is ensur 40/125/21. | ed by prote       | ctive circuits. The Si84xx provides a cl                                                                                                  | imate classification | of     |

# Table 10. IEC Safety Limiting Values<sup>1</sup>

|                |                                                                                                                                               |                                                                                                                                                                            |                                                                                                                                                                                                                | Ма                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                        |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| Symbol         | Test Condition                                                                                                                                | Min                                                                                                                                                                        | Тур                                                                                                                                                                                                            | WB<br>SOIC-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NB<br>SOIC-16                                          | Unit                                                   |
| Τ <sub>S</sub> |                                                                                                                                               |                                                                                                                                                                            |                                                                                                                                                                                                                | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150                                                    | °C                                                     |
| I <sub>S</sub> | θ <sub>JA</sub> = 100 °C/W (WB SOIC-16),<br>105 °C/W (NB SOIC-16),<br>V <sub>I</sub> = 5.5 V, T <sub>J</sub> = 150 °C, T <sub>A</sub> = 25 °C | _                                                                                                                                                                          |                                                                                                                                                                                                                | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 210                                                    | mA                                                     |
| P <sub>D</sub> |                                                                                                                                               | _                                                                                                                                                                          | _                                                                                                                                                                                                              | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 275                                                    | mW                                                     |
|                | T <sub>S</sub>                                                                                                                                | T <sub>S</sub><br>H <sub>S</sub><br>$θ_{JA} = 100 °C/W (WB SOIC-16),$<br>105 °C/W (NB SOIC-16),<br>V <sub>I</sub> = 5.5 V, T <sub>J</sub> = 150 °C, T <sub>A</sub> = 25 °C | $\begin{array}{c c} T_{S} & - \\ \theta_{JA} = 100 \ ^{\circ}C/W \ (WB \ SOIC-16), \\ 105 \ ^{\circ}C/W \ (NB \ SOIC-16), \\ V_{I} = 5.5 \ V, \ T_{J} = 150 \ ^{\circ}C, \ T_{A} = 25 \ ^{\circ}C \end{array}$ | $T_{S} = \frac{-}{100 \text{ °C/W (WB SOIC-16)}}, - \frac{-}{105 \text{ °C/W (NB SOIC-16)}}, $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

Notes:

1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figures 3 and 4.

2. The Si844x is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 °C, CL = 15 pF, input a 150 Mbps 50% duty cycle square wave.



**Table 11. Thermal Characteristics** 

|                                       |               |                | Ту  |               |               |     |      |
|---------------------------------------|---------------|----------------|-----|---------------|---------------|-----|------|
| Parameter                             | Symbol        | Test Condition | Min | WB<br>SOIC-16 | NB<br>SOIC-16 | Мах | Unit |
| IC Junction-to-Air Thermal Resistance | $\theta_{JA}$ |                |     | 100           | 105           |     | °C/W |

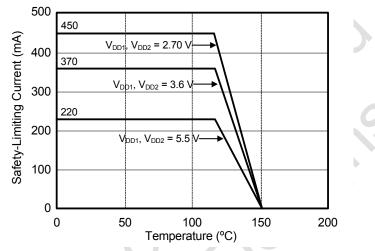
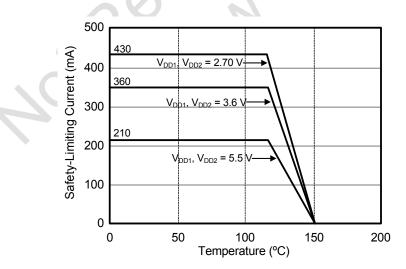
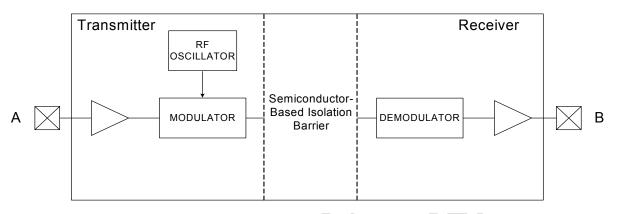



Figure 3. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-2





Figure 4. (NB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-2



# 2. Functional Description

# 2.1. Theory of Operation

The operation of an Si844x channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified block diagram for a single Si844x channel is shown in Figure 5.



# Figure 5. Simplified Channel Diagram

A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See Figure 6 for more details.

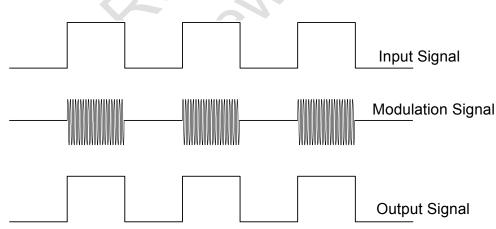



Figure 6. Modulation Scheme



# 2.2. Eye Diagram

Figure 7 illustrates an eye-diagram taken on an Si8440. For the data source, the test used an Anritsu (MP1763C) Pulse Pattern Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8440 were captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of 150 Mbps. The results also show that 2 ns pulse width distortion and 250 ps peak jitter were exhibited.

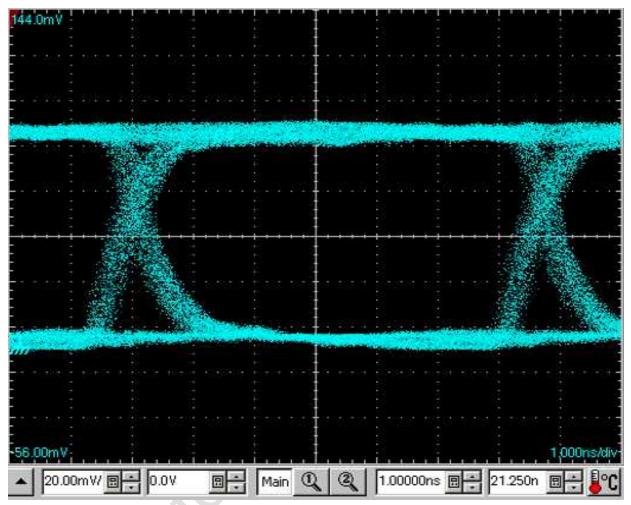



Figure 7. Eye Diagram



# 2.3. Device Operation

Device behavior during start-up, normal operation, and shutdown is shown in Table 12. Table 13 provides an overview of the output states when the Enable pins are active.

| V <sub>I</sub><br>Input <sup>1,2</sup> | EN<br>Input <sup>1,2,3,4</sup> | VDDI<br>State <sup>1,5,6</sup> | VDDO<br>State <sup>1,5,6</sup> | V <sub>O</sub> Output <sup>1,2</sup> | Comments                                                                                                                                                                                                                                                      |
|----------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Н                                      | H or NC                        | Р                              | Р                              | Н                                    | Enchlad normal encration                                                                                                                                                                                                                                      |
| L                                      | H or NC                        | Р                              | Р                              | L                                    | Enabled, normal operation.                                                                                                                                                                                                                                    |
| X <sup>7</sup>                         | L                              | Р                              | Р                              | Hi-Z or L <sup>8</sup>               | Disabled.                                                                                                                                                                                                                                                     |
| X <sup>7</sup>                         | H or NC                        | UP                             | Р                              | L                                    | Upon transition of VDDI from unpowered to powered, $V_O$ returns to the same state as $V_{\rm I}$ in less than 1 $\mu s.$                                                                                                                                     |
| X <sup>7</sup>                         | L                              | UP                             | Р                              | Hi-Z or L <sup>8</sup>               | Disabled.                                                                                                                                                                                                                                                     |
| X7                                     | X <sup>7</sup>                 | Ρ                              | UP                             | Undetermined                         | Upon transition of VDDO from unpowered to pow-<br>ered, $V_O$ returns to the same state as $V_I$ within<br>1 µs, if EN is in either the H or NC state. Upon<br>transition of VDDO from unpowered to powered,<br>$V_O$ returns to Hi-Z within 1 µs if EN is L. |

### Table 12. Si84xx Logic Operation Table


Notes:

1. VDDI and VDDO are the input and output power supplies. V<sub>I</sub> and V<sub>O</sub> are the respective input and output terminals. EN is the enable control input located on the same output side.

- **2.** X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance.
- 3. It is recommended that the enable inputs be connected to an external logic high or low level when the Si84xx is operating in noisy environments.

4. No Connect (NC) replaces EN1 on Si8440/45. No Connect replaces EN2 on the Si8445. No Connects are not internally connected and can be left floating, tied to VDD, or tied to GND.

- 5. "Powered" state (P) is defined as 2.70 V < VDD < 5.5 V.
- 6. "Unpowered" state (UP) is defined as VDD = 0 V.
- 7. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.
- 8. When using the enable pin (EN) function, the output pin state is driven to a logic low state when the EN pin is disabled (EN = 0) in Revision C. Revision D outputs go into a high-impedance state when the EN pin is disabled (EN = 0). See "2. Firsts and Design Migration Quidelines" on page 25 for more details.





| P/N    | EN1 <sup>1,2</sup> | EN2 <sup>1,2</sup> | Operation                                                                                  |
|--------|--------------------|--------------------|--------------------------------------------------------------------------------------------|
| Si8440 | —                  | Н                  | Outputs B1, B2, B3, B4 are enabled and follow the input state.                             |
|        |                    | L                  | Outputs B1, B2, B3, B4 are disabled and Logic Low or in high impedance state. <sup>3</sup> |
| Si8441 | Н                  | Х                  | Output A4 enabled and follows the input state.                                             |
|        | L                  | Х                  | Output A4 disabled and Logic Low or in high impedance state. <sup>3</sup>                  |
|        | Х                  | Н                  | Outputs B1, B2, B3 are enabled and follow the input state.                                 |
|        | Х                  | L                  | Outputs B1, B2, B3 are disabled and Logic Low or in high impedance state. <sup>3</sup>     |
| Si8442 | Н                  | Х                  | Outputs A3 and A4 are enabled and follow the input state.                                  |
|        | L                  | Х                  | Outputs A3 and A4 are disabled and Logic Low or in high impedance state. <sup>3</sup>      |
|        | Х                  | Н                  | Outputs B1 and B2 are enabled and follow the input state.                                  |
|        | Х                  | L                  | Outputs B1 and B2 are disabled and Logic Low or in high impedance state. <sup>3</sup>      |
| Si8445 | —                  | —                  | Outputs B1, B2, B3, B4 are enabled and follow the input state.                             |

# Table 13. Enable Input Truth Table<sup>1</sup>

#### Notes:

Enable inputs EN1 and EN2 can be used for multiplexing, for clock sync, or other output control. EN1, EN2 logic operation is summarized for each isolator product in Table 13. These inputs are internally pulled-up to local VDD by a 3 µA current source allowing them to be connected to an external logic level (high or low) or left floating. To minimize noise coupling, do not connect circuit traces to EN1 or EN2 if they are left floating. If EN1, EN2 are unused, it is recommended they be connected to an external logic level, especially if the Si84xx is operating in a noisy environment.

**2.** X = not applicable; H = Logic High; L = Logic Low.

2

When using the enable pin (EN) function, the output pin state is driven to a logic low state when the EN pin is disabled (EN = 0) in Revision C. Revision D outputs go into a high-impedance state when the EN pin is disabled (EN = 0). See "3. Errata and Design Migration Guidelines" on page 25 for more details.



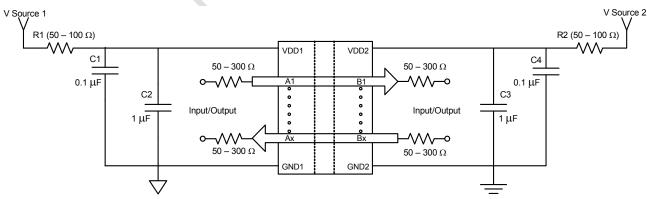
# 2.4. Layout Recommendations

To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 V<sub>AC</sub>) must be physically separated from the safety extra-low voltage circuits (SELV is a circuit with <30 V<sub>AC</sub>) by a certain distance (creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating (commonly referred to as working voltage protection). Table 6 on page 15 and Table 7 on page 15 detail the working voltage and creepage/clearance capabilities of the Si84xx. These tables also detail the component standards (UL1577, IEC60747, CSA 5A), which are readily accepted by certification bodies to provide proof for end-system specifications requirements. Refer to the end-system specification (61010-1, 60950-1, etc.) requirements before starting any design that uses a digital isolator.

The following sections detail the recommended bypass and decoupling components necessary to ensure robust overall performance and reliability for systems using the Si84xx digital isolators.

#### 2.4.1. Supply Bypass

Digital integrated circuit components typically require 0.1  $\mu$ F (100 nF) bypass capacitors when used in electrically quiet environments. However, digital isolators are commonly used in hazardous environments with excessively noisy power supplies. To counteract these harsh conditions, it is recommended that an additional 1  $\mu$ F bypass capacitor be added between VDD and GND on both sides of the package. The capacitors should be placed as close as possible to the package to minimize stray inductance. If the system is excessively noisy, it is recommended that the designer add 50 to 100  $\Omega$  resistors in series with the VDD supply voltage source and 50 to 300  $\Omega$  resistors in series with the digital inputs/outputs (see Figure 8). For more details, see "3. Errata and Design Migration Guidelines" on page 25.

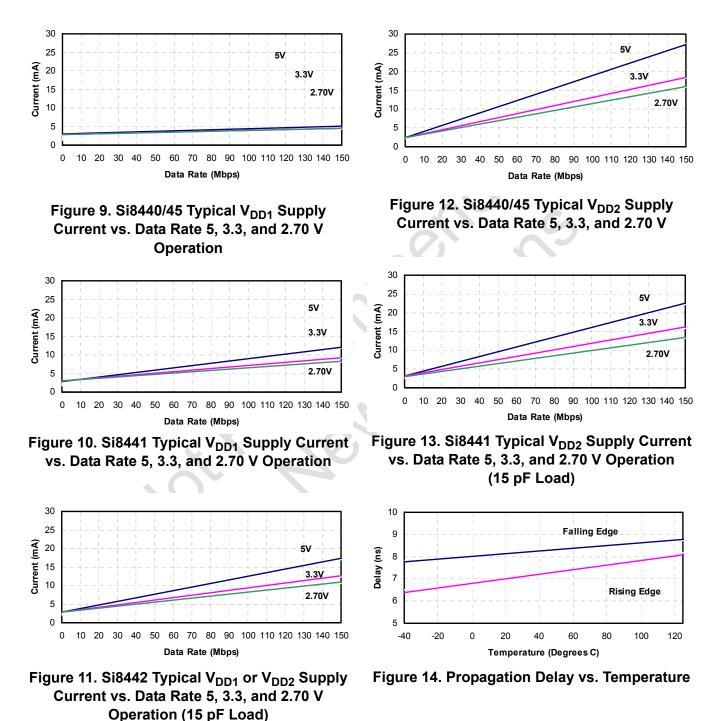

All components upstream or downstream of the isolator should be properly decoupled as well. If these components are not properly decoupled, their supply noise can couple to the isolator inputs and outputs, potentially causing damage if spikes exceed the maximum ratings of the isolator (6 V). In this case, the 50 to 300  $\Omega$  resistors protect the isolator's inputs/outputs (note that permanent device damage may occur if the absolute maximum ratings are exceeded). Functional operation should be restricted to the conditions specified in Table 1, "Recommended Operating Conditions," on page 4.

#### 2.4.2. Pin Connections

No connect pins are not internally connected. They can be left floating, tied to V<sub>DD</sub>, or tied to GND.

#### 2.4.3. Output Pin Termination

The nominal output impedance of an isolator driver channel is approximately  $85 \Omega$ ,  $\pm 40\%$ , which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. The series termination resistor values should be scaled appropriately while keeping in mind the recommendations described in "2.4.1. Supply Bypass" above.








# 2.5. Typical Performance Characteristics

The typical performance characteristics depicted in the following diagrams are for information purposes only. Refer to Tables 3, 4, and 5 for actual specification limits.





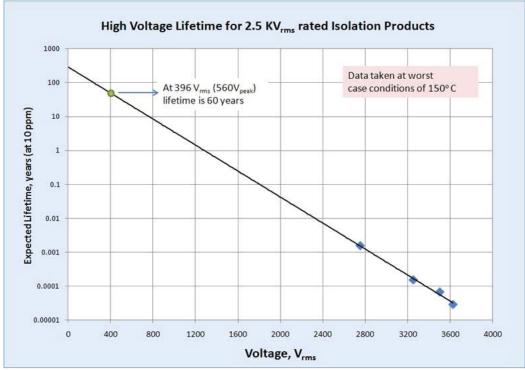



Figure 15. Si84xx Time-Dependent Dielectric Breakdown



# 3. Errata and Design Migration Guidelines

The following errata apply to Revision C devices only. See "5. Ordering Guide" on page 27 for more details. No errata exist for Revision D devices.

# 3.1. Enable Pin Causes Outputs to Go Low (Revision C Only)

When using the enable pin (EN1, EN2) function on the 4-channel (Si8440/1/2) isolators, the corresponding output pin states (pin = An, Bn, where n can be 1...4) are driven to a logic low (to ground) when the enable pin is disabled (EN1 or EN2 = 0). This functionality is different from the legacy 4-channel (Si8440/1/2) isolators. On those devices, the isolator outputs go into a high-impedance state (Hi-Z) when the enable pin is disabled (EN1 = 0 or EN2 = 0).

#### 3.1.1. Resolution

The enable pin functionality causing the outputs to go low is supported in production for Revision C of the Si844x devices. Revision D corrects the enable pin functionality (i.e., the outputs will go into the high-impedance state to match the legacy isolator products). Refer to the Ordering Guide sections of the data sheet(s) for current ordering information.

# 3.2. Power Supply Bypass Capacitors (Revision C and Revision D)

When using the Si844x isolators with power supplies  $\geq$  4.5 V, sufficient VDD bypass capacitors must be present on both the VDD1 and VDD2 pins to ensure the VDD rise time is less than 0.5 V/µs (which is > 9 µs for a  $\geq$  4.5 V supply). Although rise time is power supply dependent,  $\geq$  1 µF capacitors are required on both power supply pins (VDD1, VDD2) of the isolator device.

#### 3.2.1. Resolution

For recommendations on resolving this issue, see "2.4.1. Supply Bypass" on page 22. Additionally, refer to "5. Ordering Guide" on page 27 for current ordering information.

# 3.3. Latch Up Immunity (Revision C Only)

Latch up immunity generally exceeds ± 200 mA per pin. Exceptions: Certain pins provide < 100 mA of latch-up immunity. To increase latch-up immunity on these pins, 100  $\Omega$  of equivalent resistance must be included in series with *all* of the pins listed in Table 14. The 100  $\Omega$  equivalent resistance can be comprised of the source driver's output resistance and a series termination resistor. The Si8441 is not affected when using power supply voltages (VDD1 and VDD2)  $\leq$  3.5 V.

#### 3.3.1. Resolution

This issue has been corrected with Revision D of the device. Refer to "5. Ordering Guide" for current ordering information.

| Affected Ordering Part Numbers*                            | Device<br>Revision | Pin# | Name | Pin Type        |
|------------------------------------------------------------|--------------------|------|------|-----------------|
|                                                            |                    | 6    | A4   | Input or Output |
| SI8440SV-C-IS/IS1, SI8441SV-C-IS/IS1,<br>SI8442SV-C-IS/IS1 | С                  | 10   | EN2  | Input           |
|                                                            |                    | 14   | B1   | Output          |
|                                                            | 0                  | 6    | A4   | Input           |
| SI8445SV-C-IS/IS1                                          | С                  | 14   | B1   | Output          |

# Table 14. Affected Ordering Part Numbers (Revision C Only)

