

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

June 1999

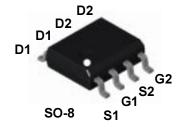
Si9955DY*

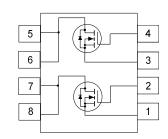
Dual N-Channel Enhancement Mode MOSFET

General Description

These N-Channel Enhancement Mode MOSFETs are produced using Fairchild Semiconductor's advance process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.


Applications


- · Battery switch
- Load switch
- Motor controls

Features

• 3.0 A, 50 V.
$$R_{DS(ON)}$$
 = 0.130 Ω @ V_{GS} = 10 V
$$R_{DS(ON)}$$
 = 0.200 Ω @ V_{GS} = 4.5 V

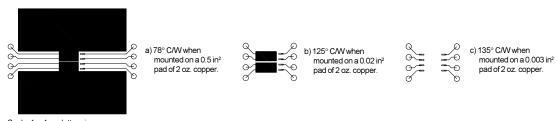
- · Low gate charge.
- · Fast switching speed.
- · High power and current handling capability.

Absolute Maximum Ratings TA = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		50	V
V _{GSS}	Gate-Source Voltage		<u>+</u> 20	V
D	Drain Current - Continuous	(Note 1a)	3.0	А
	- Pulsed		10	
P _D	Power Dissipation for Single Operation		2.0	W
	Power Dissipation for Single Operation	(Note 1a)	1.6	
		(Note 1b)	1	
		(Note 1c)	0.9	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

R _{eJA}	Thermal Resistance, Junction-to-Ambient		62.5	∘C/W
Raic	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W


Package Outlines and Ordering Information

1 ackage Outlines and Ordering information					
Device Marking	Device	Reel Size	Tape Width	Quantity	
9955	SI9955DY	13"	12mm	2500 units	

^{*} Die and manufacturing source subject to change without prior notification.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V_1 I_D = 250 \mu A$	50			V
<u>∆</u> BVɒss ∆TJ	Breakdown Voltage Temperature Coefficient	I _D = 250 _μ A, Referenced to 25°C		60		m∨/∘C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 \circ \text{C}$			2 25	μА
GSSF	Gate-Body Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
GSSR	Gate-Body Leakage Current, Reverse	V _{GS} = -20 V, V _{DS} = 0 V			-100	nA
n Chara	cteristics (Note 2)					
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	1			V
$\frac{\Delta^{VGS(th)}}{\Delta^{T_J}}$	Gate Threshold Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		-4.5		mV/∘C
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 3 A V _{GS} = 10 V, I _D = 3 A,T _J =125°C V _{GS} = 4.5 V, I _D = 1.5 A		0.076 0.124 0.103	0.130 0.200 0.200	Ω
D(on)	On-State Drain Current	V _{GS} = 10 V, V _{DS} = 5 V	10			Α
g fs	Forward Transconductance	V _{DS} = 15 V, I _D = 3 A		5.3		S
ynamic	Characteristics					
Ciss	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V,		345		pF
Coss	Output Capacitance	f = 1.0 MHz		110		pF
C _{rss}	Reverse Transfer Capacitance			25		pF
Switching	Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 25 \text{ V}, I_{D} = 1 \text{ A}, R_{L} = 25 \Omega$		5	20	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 V_{RGEN} = 6 \Omega$		7.5	20	ns
$t_{d(off)}$	Turn-Off Delay Time			20	70	ns
t _f	Turn-Off Fall Time			7	50	ns
t _{rr}	Drain-Source Reverse Recovery Time	$I_F = 1.5 \text{ A}, \text{ di/dt} = 100 \text{A/}_{\mu}\text{s}$		40	100	nS
Q_g	Total Gate Charge	$V_{DS} = 25 V_{, I_{D}} = 2 A_{,}$		13	30	nC
Q_{gs}	Gate-Source Charge	V _{GS} = 10 V		1.7		nC
Q_{gd}	Gate-Drain Charge			3.2		nC
<u> Orain-Sou</u>	urce Diode Characteristic	s and Maximum Ratings				
s	Maximum Continuous Drain-Sou	urce Diode Forward Current			2.0	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 1.5 A (Note 2)		0.8	1.2	V

 $\textbf{1.} \ \ \mathsf{R}_{\theta,\mathsf{JA}} \ \text{is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the sum of the junction of the$ the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design.

Scale 1 : 1 on letter size paper 2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ $FASTr^{TM}$ PowerTrench® SyncFETTM QFET™ TinyLogic™ Bottomless™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ QT Optoelectronics™ **VCXTM** CROSSVOLT™ HiSeC™

DOME™ ISOPLANAR™ Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition	
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.	
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.	
No Identification Needed Full Production		This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.	
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.	