imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Sil 163B PanelLink Receiver

Data Sheet

Document # Sil-DS-0055-C

Silicon Image, Inc.

Sil-DS-0055-C July 2005

Application Information

To obtain the most updated Application Notes and other useful information for your design, please visit the Silicon Image web site at www.siimage.com, or contact your local Silicon Image sales office.

Copyright Notice

This manual is copyrighted by Silicon Image, Inc. Do not reproduce, transform to any other format, or send/transmit any part of this documentation without the expressed written permission of Silicon Image, Inc.

Trademark Acknowledgment

Silicon Image, the Silicon Image logo, PanelLink[®], TMDS[®] and the PanelLink[®] Digital logo are registered trademarks of Silicon Image, Inc. VESA[®] is a registered trademark of the Video Electronics Standards Association. All other trademarks are the property of their respective holders.

Disclaimer

This document provides technical information for the user. Silicon Image, Inc. reserves the right to modify the information in this document as necessary. The customer should make sure that they have the most recent data sheet version. Silicon Image, Inc. holds no responsibility for any errors that may appear in this document. Customers should take appropriate action to ensure their use of the products does not infringe upon any patents. Silicon Image, Inc. respects valid patent rights of third parties and does not infringe upon or assist others to infringe upon such rights.

All information contained herein is subject to change without notice.

Revision History

Revision	Date	Comment
Sil-DS-0055-A	03/02	Full Release
Sil-DS-0055-B	08/04	Added ePad dimensions and Slave SCDT stabilization guideline.
Sil-DS-0055-C	07/05	ePad dimensions fix. Part ordering number update.

© 2001-2005 Silicon Image. Inc.

TABLE OF CONTENTS

Sil 163B Pin Diagram	
Functional Description	2
Electrical Specifications	
Absolute Maximum Conditions	
Normal Operating Conditions	3
Digital I/O Specifications	
DC Specifications	4
AC Specifications	5
Setup and Hold Timings for Data Rates other than 165 MHz	6
Timing Diagrams	7
Pin Descriptions	10
Output Pins	
Configuration Pins	11
Power Management Pins	11
Differential Signal Data Pins	12
Reserved Pin	12
Power and Ground Pins	12
Feature Information	13
Dual Link	13
Dual Link Configuration Pins	13
Dual Link Power Management	16
Dual Link Mode Selection	16
Dual Link Timing Diagrams	17
Clock Detect Function	19
OCK_INV# Function	19
TFT Panel Data Mapping	
Design Recommendations	
Differences Between Sil 161A and Sil 163B	27
Voltage Ripple Regulation	
Decoupling Capacitors	
Series Damping Resistors on Outputs	
Receiver Layout	
Stabilized TMDS Inputs	
Staggered Outputs and Two Pixels per Clock	
Packaging	
ePad Enhancement	
PCB Thermal Land Area	
100-pin TQFP Package Dimensions and Marking Specification	
Marking Specification	35
Ordering Information	

LIST OF TABLES

Table 2. Sil 163B Dual Link Pin Definitions.13Table 3. Sil 163B Dual Link Pin Configuration15Table 4. DVI-D Connector to Sil 163B for Dual Link Application Pin Connection.19Table 5. One Pixel/Clock Mode Data Mapping20Table 6. Two Pixel/Clock Mode Data Mapping20Table 7. One Pixel/Clock Input/Output TFT Mode – VESA P&D and FPDI-2 TM Compliant.21Table 8. Two Pixels/Clock Input/Output TFT Mode22Table 9. 24-bit One Pixel/Clock Input with 24-bit Two Pixels/Clock Output TFT Mode23Table 10. 18-bit One Pixel/Clock Input with 18-bit Two Pixels/Clock Output TFT Mode24Table 11. Two Pixels/Clock Input with One Pixel/Clock Output TFT Mode25Table 12. Output Clock Configuration by Typical Application26Table 13. Sil 161A vs. Sil 163B Pin Differences27Table 14. Sil 161B vs. Sil 163B Pin Differences27Table 15. Recommended Components29	Table 1. Setup and Hold Times at Various Data Rates	6
Table 3. Sil 163B Dual Link Pin Configuration15Table 4. DVI-D Connector to Sil 163B for Dual Link Application Pin Connection19Table 5. One Pixel/Clock Mode Data Mapping20Table 6. Two Pixel/Clock Mode Data Mapping20Table 7. One Pixel/Clock Input/Output TFT Mode – VESA P&D and FPDI-2 TM Compliant21Table 8. Two Pixels/Clock Input/Output TFT Mode22Table 9. 24-bit One Pixel/Clock Input/Output TFT Mode23Table 10. 18-bit One Pixel/Clock Input with 24-bit Two Pixels/Clock Output TFT Mode24Table 11. Two Pixels/Clock Input with 18-bit Two Pixels/Clock Output TFT Mode25Table 12. Output Clock Configuration by Typical Application26Table 13. Sil 161A vs. Sil 163B Pin Differences27Table 14. Sil 161B vs. Sil 163B Pin Differences27Table 15. Recommended Components29	Table 2. Sil 163B Dual Link Pin Definitions	
Table 4. DVI-D Connector to SiI 163B for Dual Link Application Pin Connection.19Table 5. One Pixel/Clock Mode Data Mapping.20Table 6. Two Pixel/Clock Input/Output TFT Mode – VESA P&D and FPDI-2 TM Compliant.21Table 8. Two Pixels/Clock Input/Output TFT Mode22Table 9. 24-bit One Pixel/Clock Input/Output TFT Mode23Table 10. 18-bit One Pixel/Clock Input with 24-bit Two Pixels/Clock Output TFT Mode24Table 11. Two Pixels/Clock Input with 18-bit Two Pixels/Clock Output TFT Mode25Table 12. Output Clock Configuration by Typical Application26Table 13. Sil 161A vs. Sil 163B Pin Differences27Table 14. Sil 161B vs. Sil 163B Pin Differences27Table 15. Recommended Components29	Table 3. Sil 163B Dual Link Pin Configuration	
Table 5. One Pixel/Clock Mode Data Mapping20Table 6. Two Pixel/Clock Mode Data Mapping20Table 7. One Pixel/Clock Input/Output TFT Mode – VESA P&D and FPDI-2 TM Compliant21Table 8. Two Pixels/Clock Input/Output TFT Mode22Table 9. 24-bit One Pixel/Clock Input with 24-bit Two Pixels/Clock Output TFT Mode23Table 10. 18-bit One Pixel/Clock Input with 18-bit Two Pixels/Clock Output TFT Mode24Table 11. Two Pixels/Clock Input with 0ne Pixel/Clock Output TFT Mode25Table 12. Output Clock Configuration by Typical Application26Table 13. Sil 161A vs. Sil 163B Pin Differences27Table 14. Sil 161B vs. Sil 163B Pin Differences27Table 15. Recommended Components29	Table 4. DVI-D Connector to Sil 163B for Dual Link Application Pin Connection	
Table 6. Two Pixel/Clock Mode Data Mapping20Table 7. One Pixel/Clock Input/Output TFT Mode – VESA P&D and FPDI-2 TM Compliant.21Table 8. Two Pixels/Clock Input/Output TFT Mode22Table 9. 24-bit One Pixel/Clock Input with 24-bit Two Pixels/Clock Output TFT Mode23Table 10. 18-bit One Pixel/Clock Input with 18-bit Two Pixels/Clock Output TFT Mode24Table 11. Two Pixels/Clock Input with 0ne Pixel/Clock Output TFT Mode25Table 12. Output Clock Configuration by Typical Application26Table 13. Sil 161A vs. Sil 163B Pin Differences27Table 14. Sil 161B vs. Sil 163B Pin Differences27Table 15. Recommended Components29	Table 5. One Pixel/Clock Mode Data Mapping	
Table 7. One Pixel/Clock Input/Output TFT Mode – VESA P&D and FPDI-2 [™] Compliant	Table 6. Two Pixel/Clock Mode Data Mapping	
Table 8. Two Pixels/Clock Input/Output TFT Mode22Table 9. 24-bit One Pixel/Clock Input with 24-bit Two Pixels/Clock Output TFT Mode23Table 10. 18-bit One Pixel/Clock Input with 18-bit Two Pixels/Clock Output TFT Mode24Table 11. Two Pixels/Clock Input with One Pixel/Clock Output TFT Mode25Table 12. Output Clock Configuration by Typical Application26Table 13. Sil 161A vs. Sil 163B Pin Differences27Table 14. Sil 161B vs. Sil 163B Pin Differences27Table 15. Recommended Components29	Table 7. One Pixel/Clock Input/Output TFT Mode – VESA P&D and FPDI-2 [™] Compliant	21
Table 9. 24-bit One Pixel/Clock Input with 24-bit Two Pixels/Clock Output TFT Mode23Table 10. 18-bit One Pixel/Clock Input with 18-bit Two Pixels/Clock Output TFT Mode24Table 11. Two Pixels/Clock Input with One Pixel/Clock Output TFT Mode25Table 12. Output Clock Configuration by Typical Application26Table 13. Sil 161A vs. Sil 163B Pin Differences27Table 14. Sil 161B vs. Sil 163B Pin Differences27Table 15. Recommended Components29	Table 8. Two Pixels/Clock Input/Output TFT Mode	
Table 10. 18-bit One Pixel/Clock Input with 18-bit Two Pixels/Clock Output TFT Mode 24 Table 11. Two Pixels/Clock Input with One Pixel/Clock Output TFT Mode 25 Table 12. Output Clock Configuration by Typical Application 26 Table 13. Sil 161A vs. Sil 163B Pin Differences 27 Table 14. Sil 161B vs. Sil 163B Pin Differences 27 Table 15. Recommended Components 29	Table 9. 24-bit One Pixel/Clock Input with 24-bit Two Pixels/Clock Output TFT Mode	
Table 11. Two Pixels/Clock Input with One Pixel/Clock Output TFT Mode 25 Table 12. Output Clock Configuration by Typical Application 26 Table 13. Sil 161A vs. Sil 163B Pin Differences 27 Table 14. Sil 161B vs. Sil 163B Pin Differences 27 Table 15. Recommended Components 29	Table 10. 18-bit One Pixel/Clock Input with 18-bit Two Pixels/Clock Output TFT Mode	24
Table 12. Output Clock Configuration by Typical Application 26 Table 13. Sil 161A vs. Sil 163B Pin Differences 27 Table 14. Sil 161B vs. Sil 163B Pin Differences 27 Table 15. Recommended Components 29	Table 11. Two Pixels/Clock Input with One Pixel/Clock Output TFT Mode	
Table 13. Sil 161A vs. Sil 163B Pin Differences 27 Table 14. Sil 161B vs. Sil 163B Pin Differences 27 Table 15. Recommended Components 29	Table 12. Output Clock Configuration by Typical Application	
Table 14. Sil 161B vs. Sil 163B Pin Differences 27 Table 15. Recommended Components 29	Table 13. Sil 161A vs. Sil 163B Pin Differences	
Table 15. Recommended Components 29	Table 14. Sil 161B vs. Sil 163B Pin Differences	
	Table 15. Recommended Components	

LIST OF FIGURES

Figure 1. Functional Block Diagram	2
Figure 2. Digital Output Transition Times	7
Figure 3. Receiver Clock Cycle/High/Low Times	7
Figure 4. Channel-to-Channel Skew Timing	7
Figure 5. Output Setup/Hold Timings	8
Figure 6. Output Signals Disabled Timing from Clock Inactive	8
Figure 7. Wake-Up on Clock Detect	8
Figure 8. Output Signals Disabled Timing from PD# Active	. 8
Figure 9. SCDT Timing from DE Inactive or Active	9
Figure 10. Two Pixel per Clock Staggered Output Timing Diagram	9
Figure 11. Sil 163B Dual Link Block Diagram	14
Figure 12. Timing Diagram of Master's Output	17
Figure 13. Timing Diagram of Slave's Output	18
Figure 14. Single/Dual Link Timing Diagram	18
Figure 15. Block Diagram for OCK_INV#	19
Figure 16. Voltage Regulation using TL431	28
Figure 17. Voltage Regulation using LM317	28
Figure 18. Decoupling and Bypass Capacitor Placement	29
Figure 19. Decoupling and Bypass Schematic	29
Figure 20. Receiver Output Series Damping Resistors	30
Figure 21. DVI Dual Link Rx PCB Routing Example – Top View	30
Figure 22. DVI Dual Link Rx PCB Routing Example – Top Signals Top View	31
Figure 23. DVI Dual Link Rx PCB Routing Example - Bottom Signals Top View	31
Figure 24. Stabilizing SCDT	32
Figure 25. ePad Diagram	33
Figure 26. ePad Template Layout	34
Figure 27. Package Dimensions and Marking Specification	35

General Description

The Sil 163B receiver uses PanelLink Digital technology to support high-resolution (24 bit/pixel, 16M colors) displays up to UXGA and beyond, with dual-link DVI for a total bandwidth up to 330 megapixels per second.

All PanelLink products are designed on a scaleable CMOS architecture, ensuring support for future performance enhancements while maintaining the same logical interface. System designers can be assured that the interface will be stable through a number of technology and performance generations.

PanelLink Digital technology simplifies PC and display interface design by resolving many of the system level issues associated with high-speed mixed signal design, providing the system designer with a digital interface solution that is quicker to market and lower in cost.

Features

- Low Power Operation: 280mA max. current consumption at 3.3V core operation
- Sync Detect feature for Plug & Display "Hot Plugging"
- Cable Distance Support: over 5m with twistedpair, fiber-optics ready
- Compliant with DVI 1.0
- Low power standby mode
- Automatic entry into standby mode with clock detect circuitry
- Dual-Link DVI support with two devices configured as master and slave

Functional Description

The SiI 163B is a DVI 1.0 compliant PanelLink receiver in a compact package. It provides 48 bits for data output to allow for panel support up to UXGA and dual-link applications. Figure 1 shows the functional blocks of the chip.

Figure 1. Functional Block Diagram

The PanelLink TMDS core accepts as inputs the three TMDS differential data lines and the differential clock. The core senses the signals on the link and properly decodes them providing accurate pixel data. The core outputs the necessary sync signals (HSYNC, VSYNC), clock (ODCK), and a DE signal that goes high when the active region of the video is present.

The SCDT signal is output when there is active video on the DVI link and the PLL in the TMDS has locked on to the video. SCDT can be used to trigger external circuitry, indicating that an active video signal is present or used to place the device in power down when no signal is present (by tying it to PD#). The EXT_RES component is used for impedance matching.

When Single/Dual Link Mode (S_D) is HIGH, the signals M_S and SYNC are used to select and coordinate operation of two receivers in a dual-link DVI configuration. In this mode, at frequencies up to 165 MHz, the master receiver outputs two pixels/clock (48 data bits). At frequencies above 165 MHz, the master outputs even pixels (24 bits) while the slave receiver outputs odd pixels (24 bits) synchronized with one DE output from the master.

Electrical Specifications

Absolute Maximum Conditions

Symbol	Parameter	Min	Тур	Max	Units
V _{CC}	Supply Voltage 3.3V (note 1)	-0.3		4.0	V
VI	Input Voltage	-0.3		V _{CC} + 0.3	V
Vo	Output Voltage (note 2)	-0.3		V _{CC} + 0.3	V
TJ	Junction Temperature			125	°C
T _{STG}	Storage Temperature	-65		150	°C

Notes

- 1. Permanent device damage may occur if absolute maximum conditions are exceeded.
- 2. Functional operation should be restricted to the conditions described under Normal Operating Conditions.

Normal	Operating	Conditions
	oporating	y oonantiono

Symbol	Parameter	Min	Тур	Max	Units
V _{CC}	Supply Voltage	3.0	3.3	3.6	V
V _{CCN}	Supply Voltage Noise			100	mV_{P-P}
T _A	Ambient Temperature (with power applied)	0	25	70	°C
θ_{JA}	Thermal Resistance Junction to Ambient – ePad soldered		21		°C/W
θ_{JAU}	Thermal Resistance Junction to Ambient – ePad unsoldered		30		°C/W

Silicon Image recommends soldering of ePad to improve thermal performance, especially at highest speeds. Note

1. θ_{JA} value based on 100% soldered down on multi-layer board.

Digital I/O Specifications

Under normal operating conditions unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{IH}	High-level Input Voltage		2			V
VIL	Low-level Input Voltage				0.8	V
V _{OH}	High-level Output Voltage		2.4			V
V _{OL}	Low-level Output Voltage				0.4	V
V _{CINL}	Input Clamp Voltage ¹	I _{CL} = -18mA			GND -0.8	V
V _{CIPL}	Input Clamp Voltage ¹	I _{CL} = 18mA			IVCC + 0.8	V
V _{CONL}	Output Clamp Voltage ¹	I _{CL} = -18mA			GND -0.8	V
V _{COPL}	Output Clamp Voltage ¹	I _{CL} = 18mA			OVCC + 0.8	V
I _{OL}	Output Leakage Current	High Impedance	-10		10	μA

Note

1. Guaranteed by design. Voltage undershoot or overshoot cannot exceed absolute maximum conditions for a pulse of greater than 3 ns or one third of the clock cycle.

DC Specifications

Under normal operating conditions unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{OHD}	Output High Drive Data and	V _{OUT} = 2.4 V; ST = 1	7.4	12.6	18.2	mA
	Controls	ST = 0	3.8	6.4	9.2	
I _{OLD}	Output Low Drive Data and	V _{OUT} = 0.8 V; ST = 1	-11.1	-12.6	-13.6	mA
	Controls	ST = 0	-5.5	-6.4	-6.9	
		V _{OUT} = 0.4 V; ST = 1	-6.3	-6.9	-7.6	mA
		ST = 0	-3.2	-3.5	-3.8	
I _{OHC}	ODCK, DE High Drive	V _{OUT} = 2.4 V; ST = 1	14.7	23.8	34.3	mA
		ST = 0	7.5	11.5	17.6	
I _{OLC}	ODCK, DE Low Drive	V _{OUT} = 0.8V; ST = 1	-21.2	-26.7	-27.5	mA
		ST = 0	-11.1	-12.5	-13.9	
		V _{OUT} = 0.4 V; ST = 1	-12.3	-13.6	-15.9	mA
		ST = 0	-6.2	-6.8	-7.6	
V _{ID}	Differential Input Voltage		75		1000	mV
	Single Ended Amplitude				1	ma A
I _{PD}	Power-down Current	PD#=LOW, NO RXC+ Input				mA
I _{CLKI}	Power-down Current	PD#=HIGH, No RXC <u>+</u> input			3	mA
I _{PDO}	Receiver Supply Current with	ODCK=87.5 MHz,			133	mA
	Outputs Powered Down	2-pixel/clock mode				
		$C_{LOAD} = 10 pF$				
		R _{EXT_SWING} = 510 ohm PDO# = LOW				
I _{CCR}	Receiver Supply Current	ODCK=87.5 MHz,			240	mA
		2-pixel/clock mode				
		C _{LOAD} = 10pF				
		R _{EXT_SWING} = 510 ohm				
		Typical Pattern ¹				
		ODCK=87.5 MHz, 0°C			280	mA
		2-pixel/clock mode				
		C _{LOAD} = 10pF				
		R _{EXT_SWING} = 510 ohm				
		Worst Case Pattern ²				

Notes

1. The Typical Pattern contains a gray scale area, checkerboard area, and text.

2. The Worst Case Pattern consists of a black and white checkerboard pattern; each checker is two pixels wide.

AC Specifications Under normal operating conditions unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
T _{DPS}	Intra-Pair (+ to -) Differential Input Skew ¹	165MHz			245	ps
T _{CCS}	Channel to Channel Differential Input Skew ¹	165MHz			4	ns
T _{IJIT}	Worst Case Differential Input Clock Jitter	65 MHz			465	ps
	tolerance ^{2,3}	112 MHz			270	ps
		165 MHz			182	ps
D _{LHT}	Low-to-High Transition Time: Data and Controls	C _L = 10pF; ST = 1			2.6	ns
	(70°C, 87.5 MHz, 2-pixel/clock, PIXS=1)	C _L = 5pF; ST = 0			2.7	ns
	Low-to-High Transition Time: Data and Controls	C _L = 10pF; ST = 1			2.4	ns
	(70°C, 165 MHz, 1-pixel/clock, PIXS=0)	C _L = 5pF; ST = 0			3.0	ns
	Low-to-High Transition Time: ODCK	C _L = 10pF; ST = 1			1.3	ns
	(70°C, 87.5 MHz, 2-pixel/clock, PIXS=1)	C _L = 5pF; ST = 0			1.7	ns
	Low-to-High Transition Time: ODCK	C _L = 10pF; ST = 1			1.4	ns
	(70°C, 165 MHz, 1-pixel/clock, PIXS=0)	$C_{L} = 5pF; ST = 0$			1.7	ns
D _{HLT}	High-to-Low Transition Time: Data and Controls	C _L = 10pF; ST = 1			2.8	ns
	(70°C, 87.5 MHz, 2-pixel/clock, PIXS=1)	$C_{L} = 5pF; ST = 0$			3.4	ns
	High-to-Low Transition Time: Data and Controls	C _L = 10pF; ST = 1			2.3	ns
	(70°C, 165 MHz, 1-pixel/clock, PIXS=0)	C _L = 5pF; ST = 0			3.3	ns
	High-to-Low Transition Time: ODCK	C _L = 10pF; ST = 1			1.1	ns
	(70°C, 87.5 MHz, 2-pixel/clock, PIXS=1)	C _L = 5pF; ST = 0			1.5	ns
	High-to-Low Transition Time: ODCK	C _L = 10pF; ST = 1			1.2	ns
	(70°C, 165 MHz, 1-pixel/clock, PIXS=0)	C _L = 5pF; ST = 0			1.5	ns
T _{SETUP}	Data, DE, VSYNC, HSYNC, and CTL[3:1] Setup	C _L = 10pF; ST = 1	0.9			ns
	Lime to ODCK falling edge (OCK_INV# = 0) or to ODCK rising edge (OCK_INV# = 1) at 165 MHz		(1.4)°			
		$C_L = 5pF; ST = 0$	$(0.5)^{6}$			ns
Tuern	Data DE VSYNC HSYNC and CTI [3:1] Hold Time	$C_{1} = 10 \text{ pE} \cdot \text{ST} = 1$	27			ns
·HOLD	from ODCK falling edge (OCK_INV# = 0) or from		$(2.3)^6$			110
	ODCK rising edge (OCK_INV# = 1) at 165 MHz	C ₁ = 5pF: ST = 0	3.0			ns
			$(2.6)^{6}$			-
R _{CIP}	ODCK Cycle Time ¹ (1-pixel/clock)		6.06		40	ns
F _{CIP}	ODCK Frequency ¹ (1-pixel/clock)		25		165	MHz
R _{CIP}	ODCK Cycle Time ¹ (2-pixels/clock)		12.1		80	ns
F _{CIP}	ODCK Frequency ¹ (2-pixels/clock)		12.5		82.5	MHz
R _{CIH}	ODCK High Time ⁴	C _L = 10pF; ST = 1	1.7			ns
	165 MHz, 1 pixel/clock,	$C_{L} = 5pF; ST = 0$	1.3			ns
R _{CIL}	ODCK Low Time ⁴ PIXS=0.	C _L = 10pF; ST = 1	2.0			ns
		$C_{L} = 5pF; ST = 0$	1.4			ns
T _{PDL}	Delay from PD# / PDO# Low to high impedance outputs ¹				10	ns
T _{HSC}	Link disabled (DE inactive) to SCDT low ¹			100		ms
	Link disabled (Tx power down) to SCDT low ⁵				250	ms
T _{FSC}	Link enabled (DE active) to SCDT high ¹			25	40	DEedges
T _{CLKPD}	Delay from RXC+ Inactive to high impedance outputs	RXC <u>+</u> = 25MHz			10	μS
T _{CLKPU}	Delay from RXC+ active to data active	RXC <u>+</u> = 25MHz			100	μS
T _{ST}	ODCK high to even data output ¹			0.25		R _{CIP}
Т _{оsк}	Output Skew from Slave to Master Data buses ⁷	165 MHz	300		300	ps

Silicon Image

Notes on previous table:

- 1. Guaranteed by design.
- 2. Jitter defined per DVI 1.0 Specification, Section 4.6 Jitter Specification.
- 3. Jitter measured with Clock Recovery Unit per DVI 1.0 Specification, Section 4.7 Electrical Measurement Procedures.
- 4. Output clock duty cycle is independent of the differential input clock duty cycle and the IDCK duty cycle.
- 5. Measured with transmitter powered down.
- 6. Value in parentheses is specified with OCK_INV#=1.
- 7. Skew between output data buses when two Sil 163B are wired in master-slave configuration for dual-link. See the Receiver Layout section on page 30. The 'minimum' is the limit of Slave leading Master (slave data output earlier than master data). The 'maximum' is the limit of Slave lagging Master (slave data output later than master data). When the Slave lags the Master, then the setup time available from Slave data to ODCK (from the Master) is reduced.

Setup and Hold Timings for Data Rates other than 165 MHz

The measurements shown above are minimum setup and hold timings based on the maximum data rate of 165 MHz. To estimate the setup and hold times for slower data rates (for either different resolutions or 2 pixel per clock mode), the following formula can be used:

Time (at new frequency) = Time (165 MHz) + (Clock Period at new frequency – Clock Period at 165 MHz)/2

For the case of high strength output (ST=1) with a 10pf load, and using the standard ODCK (OCK_INV# = 0), Table 1 shows the minimum set up and hold times for other speeds as follows:

Data Rate (MHz)	Clock (ns)	Setup (ns)	Hold (ns)	
112	8.9	2.3	4.1	SXGA 1 pixel/clock
56	17.9	6.8	8.6	SXGA 2 pixels/clock
135	7.4	1.6	3.4	SXGA+ 1 pixel/clock
67.5	14.8	5.3	7.1	SXGA+ 2 pixels/clock
82.5	12.1	3.9	5.7	UXGA 2 pixels/clock

 Table 1. Setup and Hold Times at Various Data Rates

Designers may want to check whether OCK+INV#=0 or OCK_INV#=1 provides better setup and hold time margin for their dual-link design. If Slave data lags Master data, which is in part determined by the layout, then the setup time from Slave to clock may be reduced, and the opposite ODCK edge may be more useful.

Timing Diagrams

Figure 2. Digital Output Transition Times

Note:

1. 10pF loading used at ST=1 and 5pF loading using at ST=0

Figure 3. Receiver Clock Cycle/High/Low Times

Figure 4. Channel-to-Channel Skew Timing

Output Timing

Figure 5. Output Setup/Hold Timings

Note

- 1. Output Data, DE and Control Signals Setup/Hold Times to ODCK Falling Edge when OCK_INV# = 0, or to ODCK Rising Edge when OCK_INV# = 1.
- 2. See also the description of layout guidelines which guarantee limited skew between master and slave outputs in the Receiver Layout section on page 30.

Figure 6. Output Signals Disabled Timing from Clock Inactive

Figure 7. Wake-Up on Clock Detect

Figure 8. Output Signals Disabled Timing from PD# Active

Pin Descriptions

Output Pins

Pin	Pin #	Туре	Description					
Name	S 00	Out	Output Even Data[22:0] Defer to the Dual Link section on page 12 for datails					
		Out	Output Even Data[25.0]. Relet to the Dual Link section on page 15 for details.					
OE23-	Pin		afer to the TET Panel Data Manning section on page 20, which tabulates the					
QE0	Diagram		relationship between the input data to the transmitter and output data from the					
	Ũ		receiver.					
			A low level on PD# or PDO# will put the output drivers into a high impedance (tri-					
			state) mode. A weak internal pull-down device brings each output to ground.					
	See	Out	Output Odd Data[23:0]. Refer to the Dual Link section on page 13 for details.					
	Sil 163B		Output data is synchronized with output data clock (ODCK).					
0023-	Pin		Output data is synchronized with output data clock (ODCK).					
QO0	Diagram		Refer to the TFT Panel Data Mapping section on page 20, which tabulates the					
			relationship between the input data to the transmitter and output data from the					
			Teceiver.					
			A low level on PD# of PDO# will put the output drivers into a high impedance (tri-					
ОДСК	44	Out	Output Data Clock This output can be inverted using the OCK INV# pin A low level					
02011		out	on PD# or PDO# will put the output driver into a high impedance (tri-state) mode. A					
			weak internal pull-down device brings the output to ground.					
DE	46	Out	Output Data Enable. This signal qualifies the active data area. A HIGH level signifies					
			active display time and a LOW level signifies blanking time. This output signal is					
			synchronized with the output data. A low level on PD# or PDO# will put the output					
			brings the output to ground					
HSYNC	48	Out	Horizontal Sync input control signal					
VSYNC	47	Out	Vertical Sync input control signal.					
CTL1	40	Out	General output control signal 1. This output is not powered down by PDO#.					
CTL2	41	Out	General output control signal 2.					
CTL3	42	Out	General output control signal 3.					
			A low level on PD# or PDO# will put the output drivers (except CTL1 by PDO#) into					
			a high impedance (tri-state) mode. A weak internal pull-down device brings each					
			output to ground.					

Configuration Pins

Pin Name	Pin #	Туре	Description
OCK_INV#	100	In	ODCK Polarity. A LOW level selects normal ODCK output. A HIGH level selects
			inverted ODCK output. All other output signals are unaffected by this pin. They will
			maintain the same timing no matter the setting of OCK_INV# pin
PIXS/M_S	4	In	When S_D pin is LOW (Single Link), this pin selects 1-pixel/clock mode (LOW) or 2-
			pixel/clock mode (HIGH). When S_D pin is HIGH (Dual Link), this pin is Master
			Slave Mode Select.
STAG_OUT#	7	In	When S_D pin is LOW (Single Link), this pin selects Staggered Output. A HIGH level
/SYNC			selects normal simultaneous outputs on all odd and even data lines. A LOW level
			selects staggered output drive. This function is only available in 2-pixels per clock
			mode. When S_D pin is HIGH (Dual Link), this pin is an input pin on the Slave
			receiver for the DE signal from the master receiver, used for synchronization.
ST	3	In	Output Drive. A HIGH level selects HIGH output drive strength. A LOW level selects
			LOW output drive strength.
S_D	1	In	Single/Dual Link Mode. A LOW level selects Single Link mode. A HIGH level
			selects Dual Link mode. This affects the operation of SYNC, M_S and the two 24-bit
			data output buses.

Power Management Pins

Pin	Pin #	Туре	Description
SCDT	8	Out	Sync Detect. A HIGH level is outputted when DE is actively toggling indicating that the link is alive. A LOW level is outputted when DE is inactive, indicating the link is down. Can be connected to PDO# to power down the outputs when DE is not detected. The SCDT output itself, however, remains in the active mode at all times.
PDO#	9	In	Output Driver Power Down (active LOW). A HIGH level indicates normal operation. A LOW level puts all the output drivers only (except SCDT and CTL1) into a high impedance (tri-state) mode. A weak internal pull-down device brings each output to ground. PDO# is a sub-set of the PD# description. The chip is not in power-down mode with this pin. SCDT and CTL1 are not tri-stated by this pin.
PD#	2	In	Power Down (active LOW). A HIGH level indicates normal operation. A LOW level indicates power down mode. During power down mode, all the output drivers are put into a high impedance (tri-state) mode. A weak internal pull-down device brings each output to ground. Additionally, all analog logic is powered down, and all inputs are disabled.

Differential Signal Data Pins

Pin Name	Pin #	Туре	Description
RX0+	90	Analog	TMDS Low Voltage Differential Signal input data pairs.
RX0-	91	Analog	
RX1+	85	Analog	
RX1-	86	Analog	
RX2+	80	Analog	
RX2-	81	Analog	
RXC+	93	Analog	TMDS Low Voltage Differential Signal input clock pair.
RXC-	94	Analog	
		_	
EXT_RES	96	Analog	Impedance Matching Control. An external 390 ohm resistor must be connected
			between AVCC and this pin.

Reserved Pin

Pin Name	Pin #	Туре	Description
RESERVED	99	In	Must be tied HIGH for normal operation.

Power and Ground Pins

Pin Name	Pin #	Туре	Description
VCC	6,38,67	Power	Digital Core VCC, must be set to 3.3V.
GND	5,39,68	Ground	Digital Core GND.
OVCC	18,29,43,57,78	Power	Output VCC, must be set to 3.3V.
OGND	19,28,45,58,76	Ground	Output GND.
AVCC	82,84,88,95	Power	Analog VCC must be set to 3.3V.
AGND	79,83,87,89,92	Ground	Analog GND.
PVCC	97	Power	PLL Analog VCC must be set to 3.3V.
PGND	98	Ground	PLL Analog GND.

Feature Information

The Sil 163B can be configured in two modes: Single Link and Dual Link. When in Single Link (S_D is LOW), the device operates in either 1-pixel/clock or 2-pixel/clock mode, according to the state of the PIXS pin. There is no communication with a second receiver. In this mode, the Sil 163B operates in the same way as the other PanelLink receivers: Sil 143B, Sil 151B, Sil 153B and Sil 161B.

In Dual Link mode, two Sil 163B's operate together to handle bandwidths up to 330 megapixels per second. The configuration and management of this mode is detailed in the following sections. Dual Link mode may operate across a pixel frequency of 25 MHz to 330 MHz. Below 165 MHz, the second TMDS channel is quiescent. All pixel data is sent across the first TMDS channel, and handled by the Master Sil 163B receiver. Above 165 MHz, both Sil 163B receivers are active, with the pixels alternating even-and-odd from Master to Slave, driven by the two TMDS DVI channels.

Dual Link

Two Sil 163B's are required for a DVI compatible Dual Link application as configured in the block diagram of Figure 11. At pixel frequencies up to 165 MHz, the system does not send any data over the second link connected to the Slave receiver. Therefore, the Slave receiver is not active and its outputs are tri-stated. All the data, both EVEN and ODD pixels, are sent over the TMDS link connected to the Master receiver. Therefore all the data, both EVEN and ODD pixels, is output by the Master receiver.

At pixel frequencies above 165 MHz, the system sends EVEN data over the link connected to the Master receiver and the ODD data over the link connected to the Slave receiver. Therefore, the EVEN data is output by the Master receiver and the ODD data is output by the Slave receiver. The Master receiver's ODD data bus is tristated to allow the Slave receiver's EVEN Data bus to output the ODD data.

Dual Link Configuration Pins

Five pins on the SiI 163B need to be considered for Dual Link receiver applications.

Pin Name	Pin #	Туре	Description
S_D	1	In	Single/Dual Link Mode. When HIGH, it is in Dual Link Mode. When LOW it is in Single Link Mode. The Slave receiver is always in Dual Link mode. The Master receiver switches between Single and Dual Link mode depending upon the SCDT output of the Slave receiver that is connected to the S D
			input of the Master receiver.
PIXS / M_S	4	In	Master/Slave. When S_D pin is HIGH (Dual Link), this pin becomes M_S. When HIGH, it is in Master mode. When LOW, it is in Slave mode. The Master receiver is in one/two-pixels per clock mode depending upon Single/Dual Link operation. The Slave receiver is always in one-pixel per clock mode. When S_D is LOW (Single Link), this pin becomes PIXS
STAG_OUT / SYNC	7	In	Synchronization. When S_D pin is HIGH (Dual Link), this pin is used to synchronize the Slave receiver to the Master receiver. The SYNC input pin of the Slave receiver is connected to the DE output pin of the Master receiver.
SCDT	8	Out	Sync Detect. When HIGH, there are valid sync signals coming from the transmitter. When LOW, there are no sync signals coming from the transmitter. The SCDT pin of the Slave receiver is connected to the S_D pin of the Master receiver.
DE	46	Out	Data Enable. This signal qualifies the active data area. A HIGH level signifies active display time and a LOW level signifies blanking time. This output signal is synchronized with the output data. The DE output pin of the Master is connected to the SYNC input pin of the Slave.

 Table 2. Sil 163B
 Dual Link Pin Definitions

Figure 11. Sil 163B Dual Link Block Diagram

Master –

The Master receiver will automatically configure to either Single or Dual Link operation (two or one pixel per clock mode, respectively) depending on the transmitter system output. This is accomplished by connecting the SCDT output pin of the Slave to the S_D pin on the Master. When the transmitter sends data on the second link, the SCDT output of the slave (and the S_D pin on the Master) is driven HIGH, setting to Dual Link (one-pixel per clock) mode. If there is no data on the second link, the SCDT output of the Slave LOW, and the Master receiver is in Single Link (two-pixels per clock) mode.

The Master receiver is configured by pulling the M_S pin to HIGH. When it is in Dual Link mode, the Master receiver is in one-pixel per clock mode outputting the EVEN data. The Master receiver's ODD data bus is tri-stated to allow the Slave receiver's EVEN data bus to be used as the ODD data bus. When it is in Single Link mode, the Master receiver is in two-pixels per clock mode outputting both the EVEN and ODD data. The Slave receiver's EVEN data bus is tri-stated to allow the Slave receiver's ODD data bus is tri-stated to allow the Slave receiver's EVEN data bus is tri-stated to allow the EVEN and ODD data. The Slave receiver's EVEN data bus is tri-stated to allow the Master receiver's ODD data bus to be used as the ODD data.

The DE output pin of the Master receiver is connected to the SYNC input pin of the Slave receiver. This is used for output synchronization between the Master receiver and Slave receiver. DE, HSYNC, VSYNC, and ODCK are all connected from the Master receiver.

Slave -

The Slave receiver is always configured for Dual Link (one pixel/clock) operation, by tying the S_D pin to HIGH. The Slave receiver is never used in Single Link mode since the Master receiver is the primary receiver for Single Link Operation.

The Slave receiver is configured by tying the M_S pin to LOW. The Slave receiver will always contain the ODD data bus in Dual Link operation. Therefore, it will never be in two-pixels per clock mode.

The SCDT output pin of the Slave receiver is connected to the S_D input pin of the Master receiver to automatically configure the Master for either Single or Dual Link mode depending upon whether the Slave receiver is active or not.

The SYNC input pin of the Slave receiver is connected to the DE output pin of the Master receiver for synchronization.

Since DE, HSYNC, VSYNC, and ODCK are all taken from the Master receiver, these pins are not connected from the Slave receiver.

S_D	PIXS/M_S	Master / Slave	Description
0	0	Not Used	Single Link One Pixel/Clock Mode. Not supported.
0	1	Master	Single Link Two Pixel/Clock Mode. This is the mode that the Master receiver will be in when in Single Link mode for pixel clock frequencies less than or equal to 165MHz.
1	0	Slave	Dual Link Slave (One Pixel/Clock) Mode. This is the mode that the Slave receiver will always be in for pixel clock frequencies greater than 165MHz and less than 330MHz.
1	1	Master	Dual Link Master (One Pixel/Clock) Mode. This is the mode that the Master receiver will be in when in Dual Link mode for pixel clock frequencies greater than 165MHz and less than 330MHz.

Table 3. Sil 163B Dual Link Pin Configuration

Dual Link Power Management

Power management with PD# and PDO# is slightly different in a Dual Link design than a Single Link. When the receivers are in dual-link mode (S_D=1), then the connection from SCDT to PDO# is internal. A receiver which detects no activity at the TMDS inputs will deassert SCDT, which will then put that chip into power-down-output mode. This is the process which enables the slave receiver to tri-state its outputs whenever it stops receiving data.

The outputs may also be directly tri-stated by asserting the PDO# pin.

Receivers will also enter a low-power state when the differential TMDS clock stops. The receiver awakens when the clock resumes, at which point the receiver begins checking for active data. Active data will assert SCDT and put the chip back into full-power mode.

Dual Link Mode Selection

Single Link Mode -

In Single Link mode, the Slave receiver is not active. Its outputs are all tri-stated. The Slave receiver will detect that there is no signal coming from the transmitter and de-assert SCDT to LOW. The SCDT pin from the Slave receiver is connected to the Master receiver's S_D pin. This will cause the S_D pin of the Master receiver to be LOW that will cause the Master receiver to be in Single Link mode. Since the Master receiver is in Single Link mode, it will output two-pixels per clock. All the Data, both EVEN and ODD pixels, will be output from the Master receiver. The Slave receiver's EVEN Data bus is tri-stated to allow the Master receiver's ODD Data bus to be used as the ODD Data.

Dual Link Mode -

In Dual Link mode, the Slave receiver is active. The Slave receiver will detect that there are valid signals coming from the transmitter and assert SCDT to HIGH. This will cause the S_D pin of the Master receiver to be HIGH that will cause the Master receiver to be in Dual Link mode. This will also cause the Master receiver to tri-state its Odd Data bus to allow the Slave receiver's EVEN Data bus to be used as the ODD Data. The Master receiver will output the EVEN Data. When there are no sync signals coming from the transmitter, both the Slave and Master receiver's outputs are tri-stated automatically.

The STAG_OUT pin of the Slave receiver is not used in one-pixel per clock mode, so this takes on a different meaning in Dual Link mode. It becomes SYNC input pin. This pin is used for synchronization between the Master and Slave receivers. The DE output pin from the Master receiver is connected to the SYNC input pin of the Slave receiver.

Dual Link Timing Diagrams

Below in Figure 12 is an example of the output timing diagram of the Master receiver. When the Slave receiver's SCDT signal is LOW, the Slave receiver is inactive and has tri-stated all its data outputs. This is because the system is sending data with a pixel clock of less than or equal to 165. The DVI link uses the Master receiver only. There are no signals being sent to the Slave receiver from the system. The Master receiver is in Single Link 2-pixel/clock mode and outputs the pixel data, both EVEN and ODD pixels.

When the Slave receiver's SCDT signal goes HIGH, the system is sending sata with a pixel clock greater than 165 MHz and less then 330 MHz. The system is sending the EVEN pixel to the Master receiver and the ODD pixel to the Slave receiver. The Slave receiver is receiving signals from the system and has asserted its SCDT signal to the Master receiver. This puts the Master receiver in Dual Link 1-pixel/clock mode. The Slave receiver outputs the ODD pixel data. The Master receiver has tri-stated its ODD pixel bus to allow the Slave receiver to send ODD pixel data.

Master DE[23:0]	DE[23:0]	DE[23:0]	DE[23:0]	DE[23:0]	DE[23:0]	DE[23:0]
Master DO[23:0]	DO[23:0]	DO[23:0]				
		DO[23:0] of the beau	he Master is T come the ODI	Fri-Stated to le D pixel data fo	et the Slave's or the Panel.	DE[23:0]
Master ODCK						
Slave SCDT (Master S_D)	2-pixel	s/clock		1-pixe	l/clock	
/	Figuro	10 Timing Di	ogrom of Mo	otor'o Qutnut		

Figure 12. Timing Diagram of Master's Output

Figure 13 is an example of the output timing diagram of the Slave receiver. When the Slave receiver's SCDT signal is LOW, the Slave receiver is inactive and has tri-stated all its outputs. This is because the system is sending data with a pixel clock of less than or equal to 165 MHz on the link connected to the Master receiver only. There are no signals being sent to the Slave receiver from the system.

When the Slave receiver's SCDT signal goes HIGH, the system is sending data with a pixel clock greater than 165 MHz and less than 330 MHz. The system is sending the EVEN pixel to the Master receiver and the ODD pixel to the Slave receiver. The Slave receiver is receiving signals from the system and has asserted its SCDT signal to the Master receiver. This puts the Master receiver in Dual Link 1-pixel/clock mode. The Slave receiver is outputting the ODD pixel data on its EVEN pixel bus. The Master receiver outputs the EVEN pixels. The Master receiver has tri-stated its ODD pixel bus to allow the Slave receiver to send ODD pixel data.

Slave DE[23:0] -		DE[23:0]	DE[23:0]	DE[23:0]	DE[23:0]
Slave DO[23:0] -					
	Slave is not receiving Data from the System and Tri-States its Data bus and Clock.	Slave is i outputs it o	receiving Data n DE[23:0]. D0	a from the Sys O[23:0] is kep	stem and t Tri-Stated.
Master ODCK					
Slave SCDT (Master S_D)		[1-pixe	l/clock	

Figure 13. Timing Diagram of Slave's Output

Figure 14 is an example of the data that is driven out by the two receivers. All the control signals, including ODCK, are sent by the Master receiver.

Panel DE[23:0]	DE[23:0]	DE[23:0]	DE[23:0]	DE[23:0]	DE[23:0]	DE[23:0]
	Master is in Two-Pixels/(Master is o both Ever pixe	Single Link Clock Mode. outputting and Odd els.	Master is in Dual Link One-Pixel/Clock Mode. Master is outputting Even pixels. Master has Tri- Stated its Odd pixel bus to allow Slave to output Odd pixel data.			ck Mode. ter has Tri- e to output
Panel DO[23:0]	DO[23:0]	DO[23:0]	DO[23:0]	DO[23:0]	DO[23:0]	DO[23:0]
Master ODCK (2-pixel/clock Mode)	Slave is n Outputs are System is s only to the I clock is s Sla	ot Active. e Tri-Stated ending Data Master. Only sent to the twe.	Slave is in Dual Link One-Pixel/Clock Mode. Slave is outputing Odd pixels. System is sending the Even pixel data to the Master and the Odd pixel data to the Slave.			
Slave SCDT (Master S_D)			; 			

Figure 14. Single/Dual Link Timing Diagram

D	VI-D Connector		Sil 163B - Master	Sil 163B - Slave		
Pin #	Signal	Pin #	Pin Name	Pin #	Pin Name	
1	TMDS Data2-	81	Rx2- for Master			
2	TMDS Data2+	80	Rx2+ for Master			
3	TMDS Data2/4 Shield					
4	TMDS Data4-			86	Rx1- for Slave	
5	TMDS Data4+			85	Rx1+ for Slave	
6	DDC Clock					
7	DDC Data					
8	NC					
9	TMDS Data1-	86	Rx1- for Master			
10	TMDS Data1+	85	Rx1+ for Master			
11	TMDS Data1/3 Shield					
12	TMDS Data3-			91	Rx0- for Slave	
13	TMDS Data3+			90	Rx0+ for Slave	
14	+5V Power					
15	Ground					
16	Hot Plug Detect					
17	TMDS Data0-	91	Rx0- for Master			
18	TMDS Data0+	90	Rx0+ for Master			
19	TMDS Data0/5 Shield					
20	TMDS Data5-			81	Rx2- for Slave	
21	TMDS Data5+			80	Rx2+ for Slave	
22	TMDS Clock Shield					
23	TMDS Clock+	93	RxC+ for Master	93	RxC+ for Slave	
24	TMDS Clock-	94	RxC- for Master	94	RxC- for Slave	

Table 4. DVI-D Connector to Sil 163B for Dual Link Application Pin Connection

Clock Detect Function

The SiI 163B includes a new power saving feature: power down with clock detect circuit. The SiI 163B will go into a low power mode when there is no video clock coming from the transmitter. In this mode, the entire chip is powered down except the clock detect circuitry. During this mode, digital I/O are set to a high impedance (tristate) mode. A weak internal pull-down device brings each output to ground. The device power down and wake-up times are shown in Figure 6 and Figure 7.

OCK_INV# Function

OCK_INV# affects only the phase of the clock output as indicated in Figure 15. OCK_INV# does not change the timing for the internal data latching. This timing is shown in Figure 5.

Figure 15. Block Diagram for OCK_INV#

TFT Panel Data Mapping

Table 5 summarizes the output data mapping in one pixel per clock mode for the Sil 163B. This output data mapping is dependent upon the PanelLink transmitters having the exact same type of input data mappings.

Table 6 summarizes the output data mapping in two pixel per clock mode. More detailed mapping information is found on the following pages. Refer to application note SiI-AN-0007 for DSTN applications.

Note that the choice of one pixel/clock versus two pixel/clock on the transmitter side has no effect on the choice of one pixel/clock versus two pixel/clock on the receiver side. The data is always sent across the link at the pixel clock rate. Therefore, designers using PanelLink receivers do not need to know how the transmitter has taken in pixel data on the transmitter input pins.

DATA	Sil 163B			
	1-Pixel/Clock Output			
	18bpp	24bpp		
BLUE[7:0]	QE[7:2]	QE[7:0]		
GREEN[7:0]	QE[15:10]	QE[15:8]		
RED[7:0]	QE[23:18]	QE[23:16]		

Table 5.	One	Pixel/Clock	Mode	Data	Mapping
14010 01	••				

Table 6. Two Pixel/Clock Mode Data Mapping

DATA	Sil 163B			
	2-Pixel/Clock Output			
	18bpp	24bpp		
BLUE[7:0] – 0	QE[7:2]	QE[7:0]		
GREEN[7:0] – 0	QE[15:10]	QE[15:8]		
RED[7:0] – 0	QE[23:18]	QE[23:16]		
BLUE[7:0] – 1	QO[7:2]	QO[7:0]		
GREEN[7:0] – 1	QO[15:10]	QO[15:8]		
RED[7:0] – 1	QO[23:18]	QO[23:16]		

Note: Sil 143B, Sil 151B, Sil 153B and Sil 161B all have the same pinout. The pin assignments shown in the following tables should also be used for these other receivers.

Table 7. One Pixel/Clock Input/Output TFT Mode – VESA P&D and FPDI-2 [™] Compl	iant
---	------

TFT VGA Output		Tx Input Data		Rx Output Data		TFT Panel Input	
24-bpp	18-bpp	160	164	163B	141B	24-bpp	18-bpp
B0		DIE0	D0	QE0	Q0	B0	
B1		DIE1	D1	QE1	Q1	B1	
B2	B0	DIE2	D2	QE2	Q2	B2	B0
B3	B1	DIE3	D3	QE3	Q3	B3	B1
B4	B2	DIE4	D4	QE4	Q4	B4	B2
B5	B3	DIE5	D5	QE5	Q5	B5	B3
B6	B4	DIE6	D6	QE6	Q6	B6	B4
B7	B5	DIE7	D7	QE7	Q7	B7	B5
G0		DIE8	D8	QE8	Q8	G0	
G1		DIE9	D9	QE9	Q9	G1	
G2	G0	DIE10	D10	QE10	Q10	G2	G0
G3	G1	DIE11	D11	QE11	Q11	G3	G1
G4	G2	DIE12	D12	QE12	Q12	G4	G2
G5	G3	DIE13	D13	QE13	Q13	G5	G3
G6	G4	DIE14	D14	QE14	Q14	G6	G4
G7	G5	DIE15	D15	QE15	Q15	G7	G5
R0		DIE16	D16	QE16	Q16	R0	
R1		DIE17	D17	QE17	Q17	R1	
R2	R0	DIE18	D18	QE18	Q18	R2	R0
R3	R1	DIE19	D19	QE19	Q19	R3	R1
R4	R2	DIE20	D20	QE20	Q20	R4	R2
R5	R3	DIE21	D21	QE21	Q21	R5	R3
R6	R4	DIE22	D22	QE22	Q22	R6	R4
R7	R5	DIE23	D23	QE23	Q23	R7	R5
Shift CLK	Shift CLK	IDCK	IDCK	ODCK	ODCK	Shift CLK	Shift CLK
VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC
HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC
DE	DE	DE	DE	DE	DE	DE	DE

For 18-bit mode, the Flat Panel Graphics Controller interfaces to the Transmitter exactly the same as in the 24-bit mode; however, 6 bits per channel (color) are used instead of 8. It is recommended that unused data bits be tied low. As can be seen from the above table, the data mapping for less than 24-bit per pixel interfaces are MSB justified. The data is sent during active display time while the control signals are sent during blank time. Note that the three data channels (CH0, CH1, CH2) are mapped to Blue, Green and Red data respectively.