

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

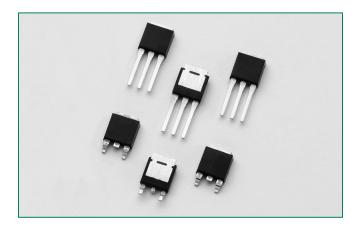
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

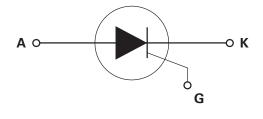
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



SJxx04xSx Series



Main Features

Symbol	Value	Unit
I _{T(RMS)}	4	А
V _{DRM} /V _{RRM}	400 or 600	V
I _{GT}	0.2	mA

Schematic Symbol

Description

This SJxx04x high temperature SCR series is ideal for uni-directional switch applications such as phase control in heating, motor speed controls, converters/rectifiers and capacitive discharge ignitions

These SCRs have a low gate current trigger level of 20µA maximum at approximately 1.5V.

Features & Benefits

- Voltage capability up to 600V
- Surge capability up to 100A at 60Hz half cycle
- 150°C maximum junction temperature
- Halogen free and RoHS compliant

Applications

Typical applications includes capacitive discharge system for motorcycle engine CDI, portable generator engine ignition, strobe lights and nailers, as well as generic rectifiers, battery voltage regulators and converters. Also controls for power tools, home/brown goods and white goods appliances.

Absolute Maximum Ratings — Sensitive SCRs

Symbol	Parameter	Value	Unit	
I _{T(RMS)}	RMS on-state current	T _C = 130°C	4	А
I _{T(AV)}	Average on-state current	T _C = 130°C	2.56	А
1	Pook pop ropotitiva guras gurrant	single half cycle; $f = 50 \text{ Hz}$; T_J (initial) = 25°C	25	A
T _{TSM}	Peak non-repetitive surge current	single half cycle; $f = 60 \text{ Hz}$; $T_J \text{ (initial)} = 25^{\circ}\text{C}$	30	A
l²t	I²t Value for fusing	$t_p = 8.3 \text{ ms}$	3.7	A ² s
di/dt	Critical rate of rise of on-state current	f = 60 Hz, T _J = 150 °C	50	A/µs
I _{GM}	Peak gate current	Pw=20 μs, T _J = 150 °C	0.5	А
P _{G(AV)}	Average gate power dissipation $T_J = 150 ^{\circ}\text{C}$		0.1	W
T _{stg}	Storage temperature range	-40 to 150	°C	
T	Operating junction temperature range	-40 to 150	°C	
V _{DSM} /V _{RSM}	Peak non-repetitive blocking voltage	V _{DRM} /V _{RRM} +100	V	

Electrical Characteristics (T_J = 25°C, unless otherwise specified) – Sensitive SCRs

Symbol	Test Conditions		Value	Unit
I _{GT}		MIN.	20	μΑ
	$V_D = 6V R_L = 100 \Omega$	MAX.	200	μΑ
V _{GT}		MAX.	0.8	V
dv/dt	$V_D = V_{DRM}$; $R_{GK} = 220\Omega$; $T_J = 125$ °C	MIN.	45	V/µs
$V_{\sf GD}$	$V_{D} = V_{DRM}$; $R_{L} = 3.3 \text{ k}\Omega$; $T_{J} = 125^{\circ}\text{C}$	MIN.	0.2	V
	$V_D = V_{DRM}$; $R_L = 3.3 \text{ k}\Omega$; $TJ = 150$ °C	MIN.	0.1	V
V _{GRM}	$I_{GR} = 10\mu A$	MIN.	6	V
I _H	$I_{T} = 20\text{mA}$ (initial)	MAX.	6	mA
t _q	t _p =50μs; dv/dt=5V/μs; di/dt=-30A/μs	MAX.	60	μs
t _{gt}	$I_{g} = 2 \times I_{gT}$, PW = 15 μ s; $I_{T} = 8A$	TYP.	3	μs

Static Characteristics

Symbol		Value	Unit			
V _{TM}		1.6	V			
		T _J = 25°C	400 - 600V		5	
$I_{\rm DRM}$ / $I_{\rm RRM}$	@V _{DRM} /V _{RRM}	$T_{J} = 125^{\circ}C, R_{GK} = 220\Omega$	400 - 600V	MAX.	1000	μΑ
		$T_{J} = 150^{\circ}\text{C}, R_{GK} = 220\Omega$	400 - 600V		3000	1

Thermal Resistances

Symbol	Parameter	Value	Unit
R _{e(J-C)}	Junction to case (AC)	1.5	°C/W

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature (Sensitive SCR)

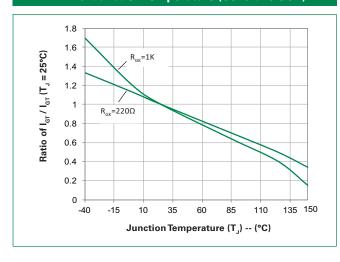


Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature

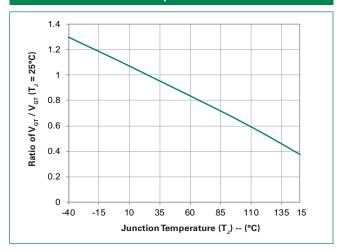


Figure 3: Normalized DC Holding Current vs. Junction Temperature

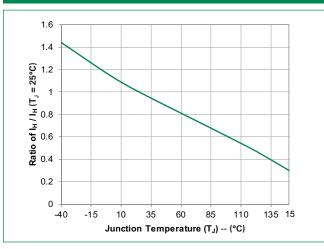


Figure 4: On-State Current vs. On-State Voltage (Typical)

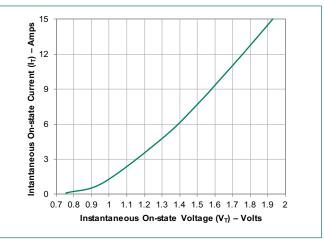


Figure 5: Power Dissipation (Typical) vs. RMS
On-State Current

Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current

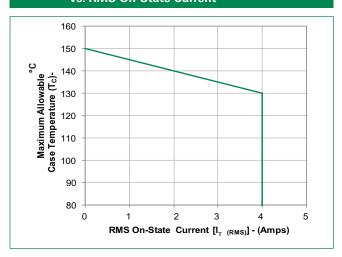
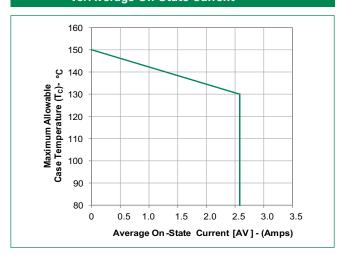
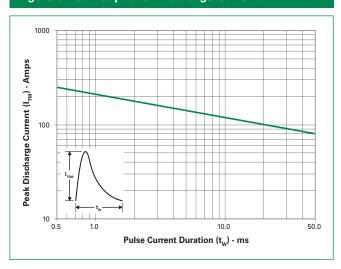




Figure 7: Maximum Allowable Case Temperature vs. Average On-State Current

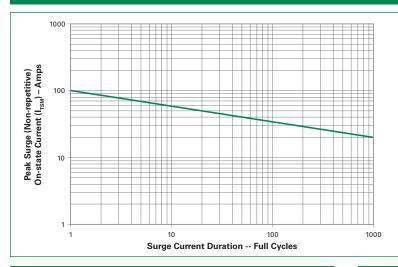


Figure 8: Peak Capacitor Discharge Current

Figure 9: Surge Peak On-State Current vs. Number of Cycles

SUPPLY FREQUENCY: 60 Hz Sinusoidal LOAD: Resistive

RMS On-State Current: $[I_{T(RMS)}]$: Maximum Rated Value at Specified Case Temperature

Notes:

- 1. Gate control may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.

Figure 10: Typical DC Gate Trigger Current with $R_{\rm GK}$ vs. Junction Temperature

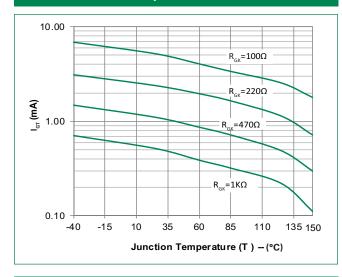


Figure 11: Typical DC Holding Current with $R_{\rm GK}$ vs. Junction Temperature

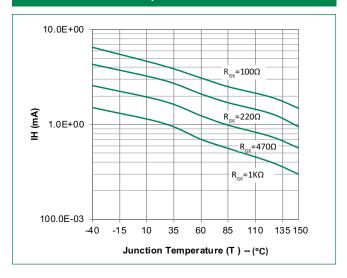
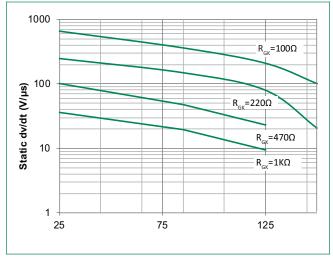
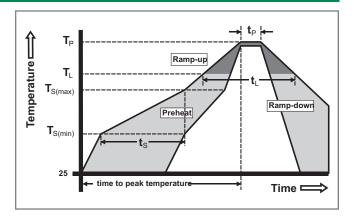



Figure 12: Typical Static dv/dt with R_{GK} vs. Junction Temperature

Soldering Parameters

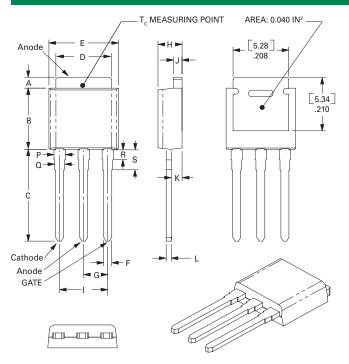

Reflow Co	ndition	Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ra	amp up rate (LiquidusTemp) k	5°C/second max	
T _{S(max)} to T _L	- Ramp-up Rate	5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
nellow	-Time (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _p)		20 - 40 seconds	
Ramp-dov	vn Rate	5°C/second max	
Time 25°C	to peakTemperature (T _P)	8 minutes Max.	
Do not exc	ceed	280°C	

Physical Specifications

Terminal Finish	100% Matte Tin-plated		
Body Material	UL Recognized epoxy meeting flammability rating V-0		
Lead Material	Copper Alloy		

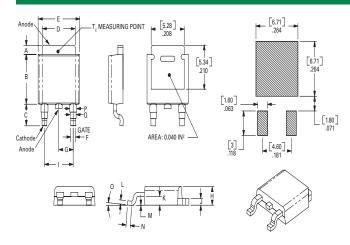
Design Considerations

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

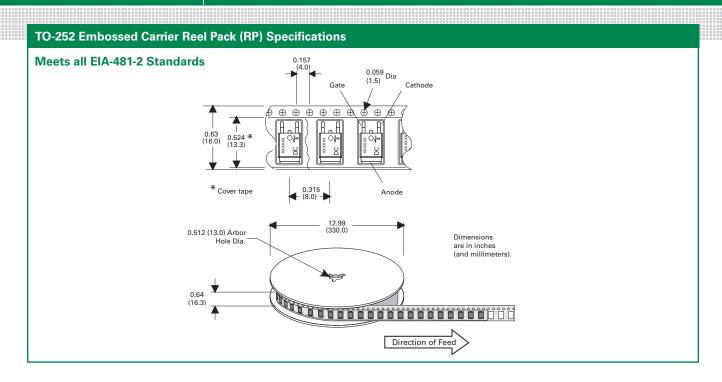


Environmental Specifications

Test	Specifications and Conditions		
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage for 1008 hours		
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time		
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 160V - DC: 85°C; 85% rel humidity		
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C		
Low-Temp Storage	1008 hours; -40°C		
Resistance to Solder Heat	MIL-STD-750 Method 2031		
Solderability	ANSI/J-STD-002, category 3, Test A		
Lead Bend	MIL-STD-750, M-2036 Cond E		
Moisture Sensitivity Level	Level 1, JEDEC-J-STD-020		



Dimensions — TO-251AA (V/I-Package) — V/I-PAK Through Hole

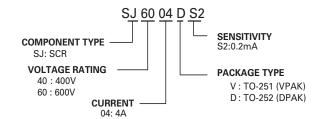

Dimension		Inches		Millimeters		
Dimension	Min	Тур	Max	Min	Тур	Max
А	0.037	0.040	0.043	0.94	1.01	1.09
В	0.235	0.242	0.245	5.97	6.15	6.22
С	0.350	0.361	0.375	8.89	9.18	9.53
D	0.205	0.208	0.213	5.21	5.29	5.41
Е	0.255	0.262	0.265	6.48	6.66	6.73
F	0.027	0.031	0.033	0.69	0.80	0.84
G	0.087	0.090	0.093	2.21	2.28	2.36
Н	0.085	0.092	0.095	2.16	2.34	2.41
1	0.176	0.180	0.184	4.47	4.57	4.67
J	0.018	0.020	0.023	0.46	0.51	0.58
K	0.035	0.037	0.039	0.90	0.95	1.00
L	0.018	0.020	0.023	0.46	0.52	0.58
Р	0.042	0.047	0.052	1.06	1.20	1.32
Q	0.034	0.039	0.044	0.86	1.00	1.11
R	0.034	0.039	0.044	0.86	1.00	1.11
S	0.074	0.079	0.084	1.86	2.00	2.11

Dimensions — TO-252AA (D-Package) — D-PAK Surface Mount

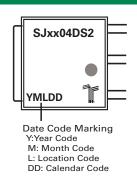
Dimension		Inches		N	1illimete:	limeters	
Dimension	Min	Тур	Max	Min	Тур	Max	
А	0.037	0.040	0.043	0.94	1.01	1.09	
В	0.235	0.243	0.245	5.97	6.16	6.22	
С	0.106	0.108	0.113	2.69	2.74	2.87	
D	0.205	0.208	0.213	5.21	5.29	5.41	
Е	0.255	0.262	0.265	6.48	6.65	6.73	
F	0.027	0.031	0.033	0.69	0.80	0.84	
G	0.087	0.090	0.093	2.21	2.28	2.36	
Н	0.085	0.092	0.095	2.16	2.33	2.41	
I	0.176	0.179	0.184	4.47	4.55	4.67	
J	0.018	0.020	0.023	0.46	0.51	0.58	
K	0.035	0.037	0.039	0.90	0.95	1.00	
L	0.018	0.020	0.023	0.46	0.51	0.58	
М	0.000	0.000	0.004	0.00	0.00	0.10	
N	0.021	0.026	0.027	0.53	0.67	0.69	
0	0°	0°	5°	0°	0°	5°	
Р	0.042	0.047	0.052	1.06	1.20	1.32	
Q	0.034	0.039	0.044	0.86	1.00	1.11	

Product Selector

Part Number	voltage Gate Sensiti		Cata Sanaitivity	Type	Package	
rait Nullibei			Gate Sensitivity	туре		
SJxx04VS2	X	X	0.2mA	Sensitive SCR	TO-251	
SJxx04DS2	X	X	0.2mA	Sensitive SCR	TO-252	


Note: xx = Voltage

Packing Options


Part Number	Marking	Weight	Packing Mode	Base Quantity
SJxx04DS2TP	SJxx04DS2	0.3 g	Tube	750 (75 per tube)
SJxx04DS2RP	SJxx04DS2 0.3 g Embossed Carrier		2500	
SJxx04VS2TP	04VS2TP SJxx04VS2 0.4 g Tube		Tube	750 (75 per tube)

Note: xx = Voltage

Part Numbering System

Part Marking System

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimier-electronics.