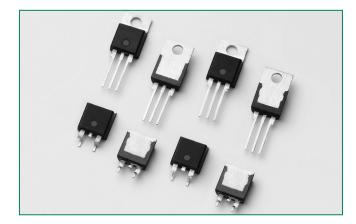
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SJxx40x Series

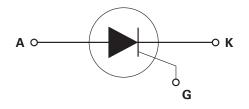
RoHS

Main Features						
Symbol	Value	Unit				
I _{T(RMS)}	40	А				
V _{drm} /V _{rrm}	400 or 600	V				
I _{gt}	40	mA				

Description

This SJxx40x high temperature SCR series is ideal for uni-directional switch applications such as phase control in heating, motor speed controls and AC rectifier and voltage regulator.

These SCRs have a low gate current trigger level of 40 mA maximum at approximately 1.5 V, with a sensitive version of this series having a gate trigger current of 15 mA maximum.


Features & Benefits

- High junction temperature
- Surge capability up to 520 A at 60 Hz half cycle
- Voltage capability up to 600 V
- Halogen free and RoHS compliant

Applications

Typical applications are AC rectifier, voltage regulator, AC solid-state switches, industrial power tools, exercise equipment, white goods and commercial appliances.

Schematic Symbol

Absolute Maximum Ratings							
Symbol	Parameter	Test Conditions	Value	Unit			
V _{DSM} /V _{RSM}	Peak non-repetitive blocking voltage	Pw = 100µs	700	V			
I _{T(RMS)}	RMS on-state current	T _c = 120°C	40	A			
I _{T(AV)}	Average on-state current	$T_c = 120^{\circ}C$	25.0	A			
1	Peak non-repetitive surge current	single half cycle; f = 50Hz; T _J (initial) = 25°C	430	А			
I _{TSM}	reak non-repetitive surge current	single half cycle; f = 60Hz; T _J (initial) = 25°C	520	A			
l²t	I²t Value for fusing	t _p = 8.3 ms	1122	A²s			
di/dt	Critical rate of rise of on-state current	f = 60Hz ; T _j = 150°C	150	A/µs			
I _{GM}	Peak gate current	$t_p \le 10 \mu s$; $T_J = 150^{\circ}C$	4	A			
P _{G(AV)}	Average gate power dissipation	$t_p \le 10 \mu s$; $T_J = 150^{\circ}C$	1	W			
T _{stg}	Storage temperature range	·	-40 to 150	°C			
Tj	Operating junction temperature range		-40 to 150	°C			

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Test Conditions	Test Conditions				Unit
1	$V_{\rm p} = 12V; \ {\rm R_{\rm L}} = 30 \ \Omega$		MAX.	40	15	
I _{gt}			MIN.	5	3	mA
V _{GT}	_	N			5	V
	$\lambda = \lambda = 125^{\circ}$	400V	1	650	400	V/µs
dv/dt		600V	MIN.	600	350	
avjat		400V	IVIIIN.	550	300	v/µs
	$V_{\rm D} = V_{\rm DRM}$; gate open; $T_{\rm J} = 150^{\circ}{\rm C}$	600V	-	500	250	
V _{gd}	$V_{\rm D} = V_{\rm DRM}; R_{\rm L} = 3.3 \text{ k}\Omega; T_{\rm J} = 150^{\circ}\text{C}$	<u>.</u>	MIN.	0	.2	V
I _H	I _T = 400mA (initial)		MAX.	60	50	mA
t _q	I _τ =2A; t _p =50μs; dv/dt=5V/μs; di/dt=-30A/μs		MAX.	3	5	μs
t _{gt}	$I_{g} = 2 \times I_{gT}$; PW = 15µs; $I_{T} = 80A$		TYP.	2	2	μs

NOTE: xx = voltage, x = package

Static Characteristics

Symbol	Test Co	Value	Unit				
V _{TM}	I _T = 80A; t _p = 380μs	1.7	V				
		$T_J = 25^{\circ}C$		10			
I _{drm} / I _{rrm}	$@V_{_{\mathrm{DRM}}}/V_{_{\mathrm{RRM}}}$	T _J = 125°C	MAX.	2000	μA		
		T _J = 150°C	_	4000			

Thermal Resistances							
Symbol	Parameter		Value	Unit			
R _{θ(J-C)}	Junction to case (AC)	SJxx40Ry/SJxx40Ny	0.8	°C/W			
R _{θ(J-A)}	Junction to ambient	Sxx40Ry	40	°C/W			

Note: xx = voltage, y = sensitivity & type

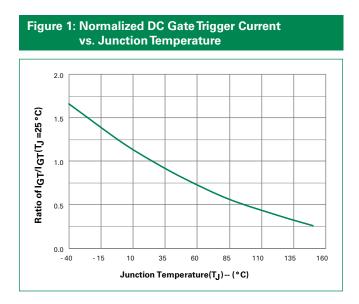
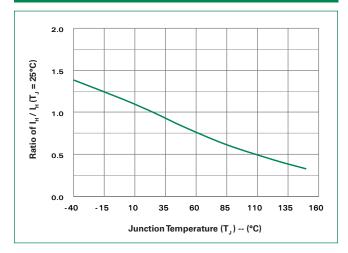
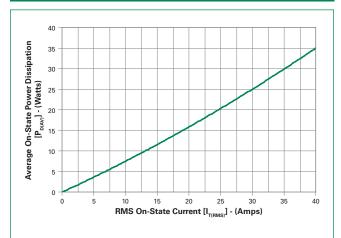


Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature




Teccor[®] brand Thyristors

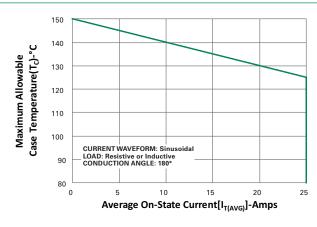

40 Amp Standard High Temperature SCRs

Figure 3: Normalized DC Holding Current vs. Junction Temperature

vs. Average On-State Current

Figure 7: Maximum Allowable Case Temperature

Figure 4: On-State Current vs. On-State Voltage (Typical)

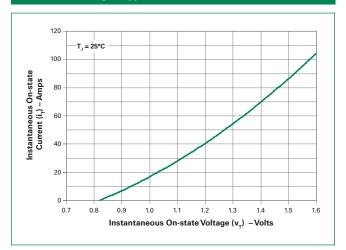


Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current

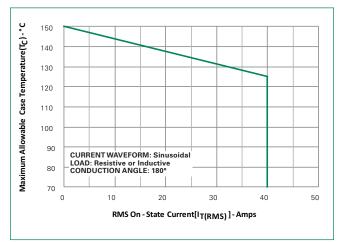
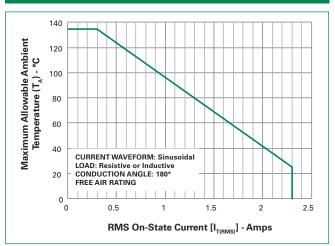
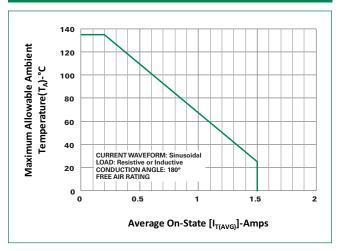
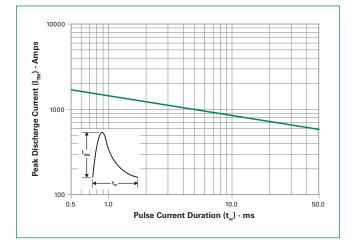



Figure 8: Maximum Allowable Ambient Temperature vs. RMS On-State Current



Teccor[®] brand Thyristors 40 Amp Standard High Temperature SCRs


Figure 9: Maximum Allowable Ambient Temperature vs. Average On-State Current

um Allowable Ambient Temperature vs. Figure 10: Peak Capacitor Discharge Current e On-State Current

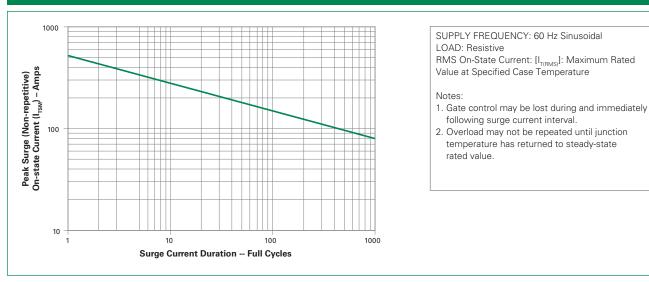
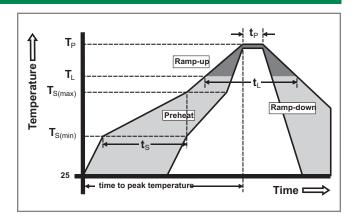


Figure 11: Peak Capacitor Discharge Current Derating


Figure 12: Surge Peak On-State Current vs. Number of Cycles

Soldering Parameters

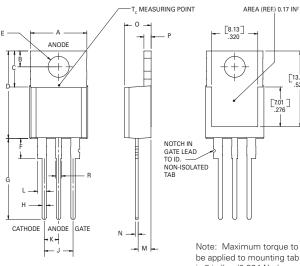
Reflow Co	ndition	Pb – Free assembly	
	- Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ra (T _L) to pea	amp up rate (LiquidusTemp) k	5°C/second max	
T _{S(max)} to T _L	- Ramp-up Rate	5°C/second max	
Reflow	- Temperature (T _L) (Liquidus)	217°C	
nenow	-Time (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _p)		20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peakTemperature (T _P)		8 minutes Max.	
Do not exc	ceed	280°C	

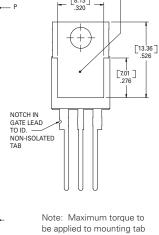
Physical Specifications

Terminal Finish	100% Matte Tin-plated
Body Material	UL Recognized epoxy meeting flammability rating V-0
Lead Material	Copper Alloy

Design Considerations

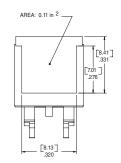
Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.


Environmental Specifications


Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 150°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E
Moisture Sensitivity Level	Level 1, JEDEC-J-STD-020D

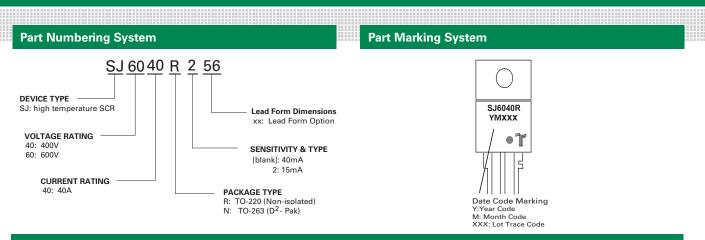
Teccor[®] brand Thyristors 40 Amp Standard High Temperature SCRs

Dimensions – TO-220AB (R-Package) – Non-Isolated Mounting Tab Common with Center Lead


is 8 in-lbs. (0.904 Nm).

Dimension	Inc	hes	Millin	neters
Dimension	Min	Max	Min	Max
А	0.380	0.420	9.65	10.67
В	0.105	0.115	2.67	2.92
С	0.230	0.250	5.84	6.35
D	0.590	0.620	14.99	15.75
E	0.142	0.147	3.61	3.73
F	0.110	0.130	2.79	3.30
G	0.540	0.575	13.72	14.61
Н	0.025	0.035	0.64	0.89
J	0.195	0.205	4.95	5.21
К	0.095	0.105	2.41	2.67
L	0.060	0.075	1.52	1.91
М	0.085	0.095	2.16	2.41
Ν	0.018	0.024	0.46	0.61
0	0.178	0.188	4.52	4.78
Р	0.045	0.060	1.14	1.52
R	0.038	0.048	0.97	1.22

Dimensions – TO- 263 (N-package) – D²-Pak Surface Mount


U

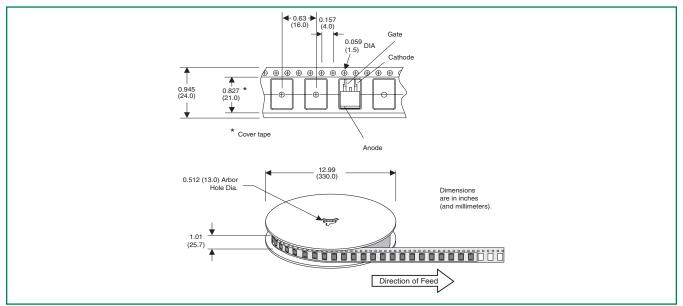
T, MEASURING POINT ۷ ANODE + W T T GATE CATHODE G - D L __ F [11.68] .460 [2.16] .085 [7.01] [7.01] .276 [16.89] .665 [8.89] .350 [1.40] [3.81] .150 [2.03] .080 _ [6.60] _

Dimension	Inc	hes	Millin	neters
Dimension	Min	Max	Min	Max
А	0.360	0.370	9.14	9.40
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.63	0.89
E	0.048	0.055	1.22	1.40
F	0.060	0.075	1.52	1.91
G	0.095	0.105	2.41	2.67
Н	0.083	0.093	2.11	2.36
J	0.018	0.024	0.46	0.61
К	0.090	0.110	2.29	2.79
S	0.590	0.625	14.99	15.87
V	0.035	0.045	0.89	1.14
U	0.002	0.010	0.05	0.25
W	0.040	0.070	1.02	1.78

Product Selector

Part Number	Voltage		Gate Sensitivity	Туре	Package	
r art Nulliber	400V	600V		туре	Гаскаде	
SJxx40R	Х	Х	40mA	Standard SCR	TO-220R	
SJxx40N	Х	Х	40mA	Standard SCR	TO-263	
SJxx40R2	Х	Х	15mA	Standard SCR	TO-220R	
SJxx40N2	Х	Х	15mA	Standard SCR	TO-263	

Note: xx = Voltage


Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
SJxx40RTP	SJxx40R	2.2g	Tube	500 (50 per tube)
SJxx40NTP	SJxx40N	1.6g	Tube	500 (50 per tube)
SJxx40NRP	SJxx40N	1.6g	Embossed Carrier	500
SJxx40R2TP	SJxx40R2	2.2g	Tube	500 (50 per tube)
SJxx40N2RP	SJxx40N2	1.6g	Embossed Carrier	500

Note: xx = Voltage

Reel Pack (RP) for TO-263 Embossed Carrier Specifications

Meets all EIA-481-2 Standards

