

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

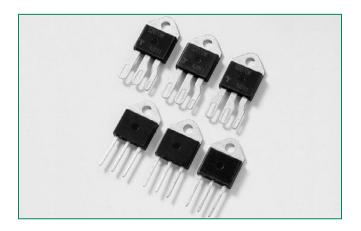
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



RoHS Sxx65x & Sxx70x Series

Description

Excellent unidirectional switches for phase control applications such as heating and motor speed controls.

Standard phase control SCRs are triggered with few milliamperes of current at less than 1.5V potential.

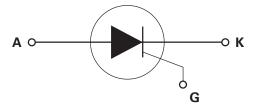
Features & Benefits

- RoHS compliant
- Glass passivated junctions
- Voltage capability up to 1000 V
- Surge capability up to 950 A

Agency Approval

Agency	Agency File Number
<i>L</i> R _®	J & K Packages: E71639

Applications


Typical applications are AC solid-state switches, industrial power tools, exercise equipment, white goods and commercial appliances.

Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

Main Features

Symbol	Value	Unit
I _{T(RMS)}	65 & 70	А
V_{DRM}/V_{RRM}	400 to 1000	V
I _{GT}	50	mA

Schematic Symbol

Absolute Maximum Ratings

Symbol	Parameter	Test Conditions		Value	Unit
I _{T(RMS)}	RMS on-state current	Sxx65J Sxx65K	T _c = 75°C	65	А
		Sxx70W	$T_{\rm C} = 80^{\circ}{\rm C}$	70	
I _{T(AV)}	Average on-state current	Sxx65J Sxx65K	TC = 75°C	41.0	А
		Sxx70W	T _C = 80°C	45.0	А
1	Peak non-repetitive surge current	single half cycle; $f = 50Hz$; T_J (initial) = 25°C		800	А
I _{TSM}		single half cycle; $f = 60Hz$; T_J (initial) = 25°C		950	
l²t	I²t Value for fusing	$t_p = 8.3 \text{ ms}$		3745	A ² s
di/dt	Critical rate of rise of on-state current	f = 60Hz ;	T _J = 125°C	200	A/µs
I _{GM}	Peak gate current	$T_J = 125$ °C $P_W = \mu S$		5.0	А
P _{G(AV)}	Average gate power dissipation	T _J = 125°C		1.0	W
T _{stg}	Storage temperature range		-40 to 150	°C	
T _J	Operating junction temperature range			-40 to 125	°C

Teccor® brand Thyristors 65 / 70 Amp Standard SCRs

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

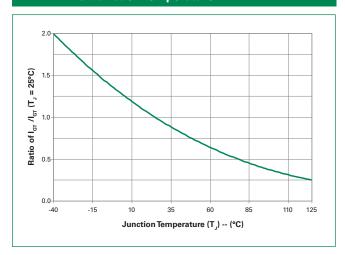
Symbol	Test Conditi	Value	Unit		
1	$V_D = 12V; R_L = 30 \Omega$		MAX.	50	Λ
I _{GT}			MIN.	5	mA
V _{GT}			MAX.	2.0	V
		400V		650	
	$V_D = V_{DRM}$; gate open; $T_J = 100$ °C $V_D = V_{DRM}$; gate open; $T_J = 125$ °C	600V		600	
		800V		500	
dv/dt		1000V	MIN.	250	V/µs
		400V		550	
		600V		500	
		800V		475	
$V_{\rm GD}$	$V_{D} = V_{DRM}$; $R_{L} = 3.3 \text{ k}\Omega$; $T_{J} = 125^{\circ}\text{C}$		MIN.	0.2	V
I _H	I _T = 400mA (initial)		MAX.	80	mA
t _q	(1)		MAX.	35	μs
t _{gt}	$I_{G} = 2 \times I_{GT}$, PW = 15 μ s; $I_{T} = 140$ A		TYP.	2.5	μs

Note:

(1) I_T =2A; t_p =50 μ s; dv/dt=5V/ μ s; di/dt=-30A/ μ s

Static Characteristics

Symbol		Value	Unit			
	65A De	evice $I_{T} = 130A$; $t_{p} = 38$	0µs	MAX.	1.8	V
V _{TM}	70A De	evice $I_{T} = 140A$; $t_{p} = 38$	0µs	IVIAX.	1.0	V
		T ₁ = 25°C	400 – 800V		20	
	V_{DRM}/V_{RRM} $T_{J} = 100^{\circ}C$ $T_{J} = 125^{\circ}C$	I _J = 25 C	1000 V	MAX.	30	
		V_{DRM}/V_{RRM} $T_{J} = 100^{\circ}C$	400 – 600V		1500	
I _{DRM} / I _{RRM}			800V		2000	μΑ
			1000V		5000	
		T 125°C	400V – 600V		3000	
		800V		5000		


Thermal Resistances

Symbol	Parameter		Value	Unit
R	J-C) Junction to case (AC)	Sxx65J Sxx65K	0.86	°C/W
$R_{\theta(J-C)}$		Sxx70W	0.6	5,11

Note: xx = voltage

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

Figure 3: Normalized DC Holding Current vs. Junction Temperature

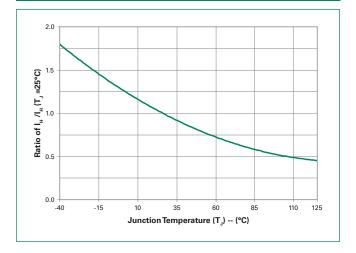
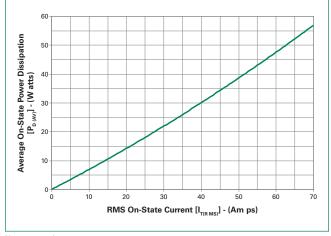



Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

Note: xx = voltage

Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature

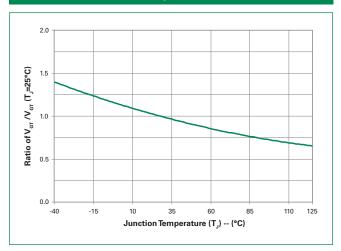


Figure 4: On-State Current vs. On-State Voltage (Typical)

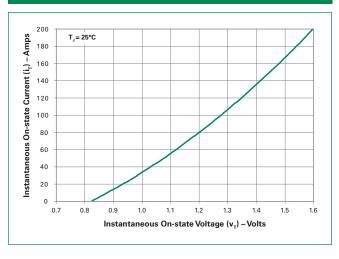


Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current

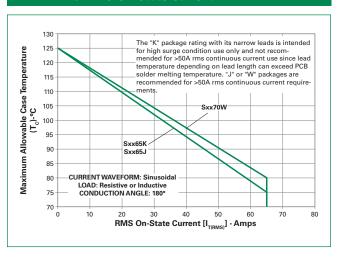
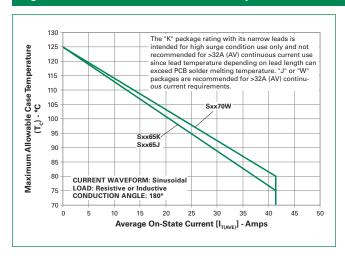



Figure 7: Maximum Allowable Case Temperature vs. Average On-State Current

Figure 8: Peak Capacitor Discharge Current

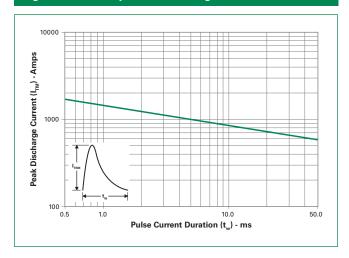


Figure 9: Peak Capacitor Discharge Current Derating

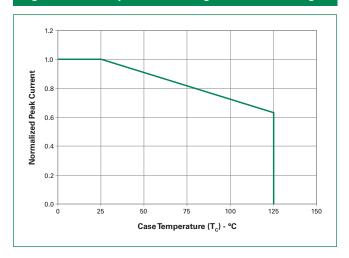
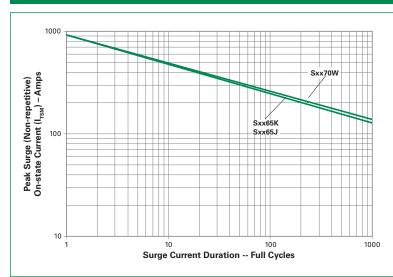



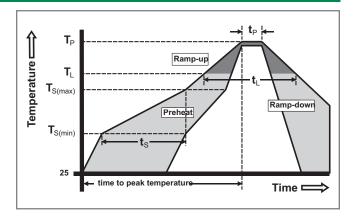
Figure 10: Surge Peak On-State Current vs. Number of Cycles

SUPPLY FREQUENCY: 60 Hz Sinusoidal

LOAD: Resistive

RMS On-State Current: [I $_{\rm T(RMS)}$]: Maximum Rated Value at Specified Case Temperature

Notes


- 1. Gate control may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.

Note: xx = Voltage

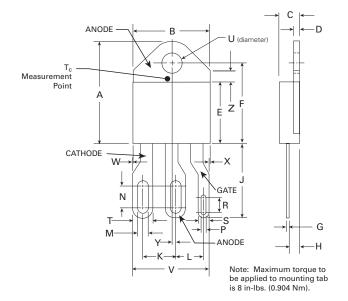
Soldering Parameters

Reflow Condition		Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (Liquidus Temp) (T _L) to peak		5°C/second max	
T _{S(max)} to T _L	- Ramp-up Rate	5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
nellow	-Temperature (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _p)		20 - 40 seconds	
Ramp-dov	vn Rate	5°C/second max	
Time 25°C to peak Temperature (T _P)		8 minutes Max.	
Do not exc	ceed	280°C	

Physical Specifications

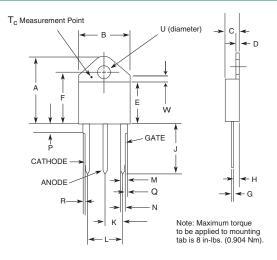
Terminal Finish	100% Matte Tin-plated
Body	UL recognized epoxy meeting flammability classification 94V-0
Lead Material	Copper Alloy

Design Considerations


Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

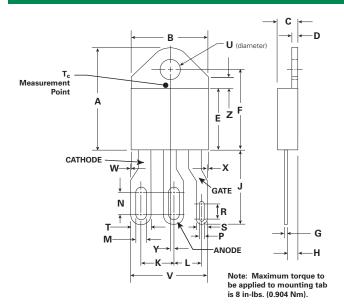
Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Thermal Shock	MIL-STD-750, M-1056 10 cycles; 0°C to 100°C; 5-min dwelltime at each temperature; 10 sec (max) transfer time between temperature
Autoclave	EIA / JEDEC, JESD22-A102 168 hours (121°C at 2 ATMs) and 100% R/H
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E



Dimensions – TO-218X (W Package) — Non-Isolated Mounting Tab

Dimension	Incl	hes	Millim	eters
Difficusion	Min	Max	Min	Max
А	0.810	0.835	20.57	21.21
В	0.610	0.630	15.49	16.00
С	0.178	0.188	4.52	4.78
D	0.055	0.070	1.40	1.78
Е	0.487	0.497	12.37	12.62
F	0.635	0.655	16.13	16.64
G	0.022	0.029	0.56	0.74
Н	0.075	0.095	1.91	2.41
J	0.575	0.625	14.61	15.88
K	0.256	0.264	6.50	6.71
L	0.220	0.228	5.58	5.79
М	0.080	0.088	2.03	2.24
N	0.169	0.177	4.29	4.49
Р	0.034	0.042	0.86	1.07
R	0.113	0.121	2.87	3.07
S	0.086	0.096	2.18	2.44
Т	0.156	0.166	3.96	4.22
U	0.164	0.165	4.10	4.20
V	0.603	0.618	15.31	15.70
W	0.000	0.005	0.00	0.13
X	0.003	0.012	0.07	0.30
Υ	0.028	0.032	0.71	0.81
Z	0.085	0.095	2.17	2.42


Dimensions -TO-218AC (K Package) — Isolated Mounting Tab

Dimension	Inc	hes	Millim	neters
Difficusion	Min	Max	Min	Max
А	0.810	0.835	20.57	21.21
В	0.610	0.630	15.49	16.00
С	0.178	0.188	4.52	4.78
D	0.055	0.070	1.40	1.78
E	0.487	0.497	12.37	12.62
F	0.635	0.655	16.13	16.64
G	0.022	0.029	0.56	0.74
Н	0.075	0.095	1.91	2.41
J	0.575	0.625	14.61	15.88
K	0.211	0.219	5.36	5.56
L	0.422	0.437	10.72	11.10
М	0.058	0.068	1.47	1.73
N	0.045	0.055	1.14	1.40
Р	0.095	0.115	2.41	2.92
Q	0.008	0.016	0.20	0.41
R	0.008	0.016	0.20	0.41
U	0.164	0.165	4.10	4.20
W	0.085	0.095	2.17	2.42

Dimensions - TO-218X (J Package) - Isolated Mounting Tab Common with Center Lead

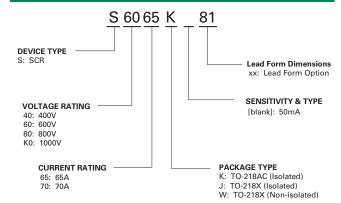
Dimension	Inc	hes	Millim	eters
Dimension	Min	Max	Min	Max
А	0.810	0.835	20.57	21.21
В	0.610	0.630	15.49	16.00
С	0.178	0.188	4.52	4.78
D	0.055	0.070	1.40	1.78
Е	0.487	0.497	12.37	12.62
F	0.635	0.655	16.13	16.64
G	0.022	0.029	0.56	0.74
Н	0.075	0.095	1.91	2.41
J	0.575	0.625	14.61	15.88
K	0.256	0.264	6.50	6.71
L	0.220	0.228	5.58	5.79
М	0.080	0.088	2.03	2.24
Ν	0.169	0.177	4.29	4.49
Р	0.034	0.042	0.86	1.07
R	0.113	0.121	2.87	3.07
S	0.086	0.096	2.18	2.44
Т	0.156	0.166	3.96	4.22
U	0.164	0.165	4.10	4.20
V	0.603	0.618	15.31	15.70
W	0.000	0.005	0.00	0.13
X	0.003	0.012	0.07	0.30
Υ	0.028	0.032	0.71	0.81
Z	0.085	0.095	2.17	2.42

Product Selector

Part Number	Voltage				Cata Sanaitivity	Time	Dookowa
	400V	600V	800V	1000V	Gate Sensitivity	Туре	Package
Sxx65K	X	X	X	X	50mA	Standard SCR	TO-218AC
Sxx65J	X	X	X		50mA	Standard SCR	TO-218X
Sxx70W	X	X	X		50mA	Standard SCR	TO-218X

Note: xx = Voltage

Packing Options


Part Number	Marking	Weight	Packing Mode	Base Quantity
Sxx65KTP	Sxx65K	4.40g	Tube	250 (25 per tube)
Sxx65JTP	Sxx65J	5.23g	Tube	250 (25 per tube)
Sxx70WTP	Sxx70W	5.23g	Tube	250 (25 per tube)

Note: xx = Voltage

Teccor® brand Thyristors 65 / 70 Amp Standard SCRs

Part Numbering System

Part Marking System

TO-218AC - (K Package) TO-218X - (J Package) TO-218X - (W Package)

