

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

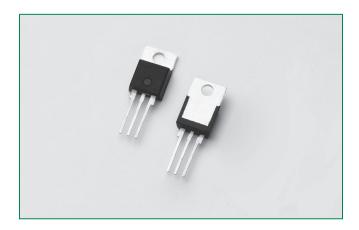


### Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China








### SK625xD Series





#### **Description**

Excellent unidirectional switches for phase control applications such as heating and motor speed controls.

Standard phase control SCRs are triggered with few milliamperes of current at less than 1.5V potential.

### **Features & Benefits**

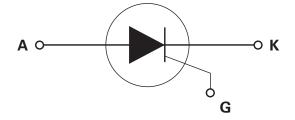
- RoHS compliant
- Voltage capability up to 1600 V
- Surge capability up to 250 A

 Electrically isolated package "LD-Package" and UL recognized for 2500V<sub>RMS</sub>

### **Agency Approval**

| Agency    | Agency File Number |
|-----------|--------------------|
| <b>71</b> | E71639             |

### **Applications**


Typical applications are AC solid-state switches, industrial power tools, line rectification 50/60Hz.

Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

### **Main Features**

| Symbol                             | Value | Unit |
|------------------------------------|-------|------|
| I <sub>T(RMS)</sub>                | 25    | А    |
| V <sub>DRM</sub> /V <sub>RRM</sub> | 1600  | V    |
| I <sub>GT</sub>                    | 35    | mA   |

### **Schematic Symbol**



### Absolute Maximum Ratings — 25A SCR

| Symbol                             | Parameter                                     | Test Conditions                                                 |                                 | Value      | Unit             |
|------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|---------------------------------|------------|------------------|
| V <sub>DRM</sub> /V <sub>RRM</sub> | Repetitive Peak off-state/Reverse Voltage     |                                                                 |                                 | 1600       | V                |
| V <sub>DSM</sub> /V <sub>RSM</sub> | Non-repetitive peak off-state/Reverse voltage |                                                                 |                                 | 1700       | V                |
| 1                                  | RMS on-state current                          | SK625LD                                                         | $T_{\rm C} = 60^{\circ} \rm C$  | 25         | A                |
| I <sub>T(RMS)</sub>                | Tivis on-state current                        | SK625RD                                                         | T <sub>C</sub> = 90°C           | 25         | A                |
|                                    | Average on state current                      | SK625LD                                                         | $T_{\rm C} = 60^{\circ}{\rm C}$ | 16         | А                |
| T(AV)                              | Average on-state current                      | SK625RD                                                         | T <sub>C</sub> = 90°C           | 10         | A                |
| 1                                  | Peak non-repetitive surge current             | single half cycle; $f = 50Hz$ ; $T_J$ (initial) = $25^{\circ}C$ |                                 | 250        | Α                |
| I <sub>TSM</sub>                   | reak non-repetitive surge current             | single half cycle; f = 60Hz;<br>T <sub>J</sub> (initial) = 25°C |                                 | 300        |                  |
| l²t                                | I²t Value for fusing                          | $t_p = 8$                                                       | 3.3 ms                          | 375        | A <sup>2</sup> s |
| di/dt                              | Critical rate of rise of on-state current     |                                                                 |                                 | 100        | A/µs             |
| I <sub>GM</sub>                    | Peak gate current                             | T <sub>J</sub> = 125°C                                          |                                 | 1.5        | А                |
| $P_{G(AV)}$                        | Average gate power dissipation                | T <sub>J</sub> = 125°C                                          |                                 | 1          | W                |
| T <sub>stg</sub>                   | Storage temperature range                     |                                                                 |                                 | -40 to 150 | °C               |
| T                                  | Operating junction temperature range          |                                                                 |                                 |            | °C               |

Notes : x = package

### **Electrical Characteristics** (T<sub>J</sub> = 25°C, unless otherwise specified)

| Symbol          | Test Conditions                                                                   | Value | Unit |      |
|-----------------|-----------------------------------------------------------------------------------|-------|------|------|
| I <sub>GT</sub> | V = 12V: B = 200                                                                  | MAX.  | 35   | mA   |
| V <sub>GT</sub> | $V_{\rm D} = 12V; R_{\rm L} = 30\Omega$                                           | MAX.  | 1.5  | V    |
| dv/dt           | $V_D = 2/3 V_{DRM}$ ; gate open; $T_J = 125$ °C                                   | MIN.  | 2000 | V/µs |
| $V_{GD}$        | $V_{D} = V_{DRM}$ ; $R_{L} = 3.3 \text{ k}\Omega$ ; $T_{J} = 125^{\circ}\text{C}$ | MIN.  | 0.2  | V    |
| I <sub>H</sub>  | $I_T = 500$ mA (initial)                                                          | MAX.  | 120  | mA   |
| t <sub>q</sub>  | $I_{T}$ =0.5A; $t_{p}$ =50 $\mu$ s; $dv/dt$ =5 $V/\mu$ s; $di/dt$ =-30A/ $\mu$ s  | TYP.  | 25   | μs   |
| t <sub>ot</sub> | $I_{G} = 2 \times I_{GT}$ ; PW = 15 $\mu$ s; $I_{T} = 50$ A                       | TYP.  | 5    | μs   |

Notes : x = package

### **Static Characteristics**

| Symbol                                                   | Test Conditions                     |                        |        | Value | Unit |
|----------------------------------------------------------|-------------------------------------|------------------------|--------|-------|------|
| V <sub>TM</sub>                                          | $I_{T} = 50A; t_{p} = 380 \mu s$    |                        | MAX.   | 1.8   | V    |
|                                                          | V IV                                | T <sub>J</sub> = 25°C  | MAX.   | 10    | μА   |
| I <sub>DRM</sub> / I <sub>RRM</sub> V <sub>DRM</sub> / V | V <sub>DRM</sub> / V <sub>RRM</sub> | T <sub>J</sub> = 125°C | IVIAX. | 4     | mA   |

| Thomas | Resistance | _ |
|--------|------------|---|
| merma  | nesistance | 5 |

| Symbol              | Parameter                                 |         | Value | Unit  |
|---------------------|-------------------------------------------|---------|-------|-------|
| D                   | R <sub>e(J-C)</sub> Junction to case (AC) | SK625RD | 1.0   | 9CAA/ |
| Π <sub>θ(J-C)</sub> |                                           | SK625LD | 1.9   | °C/W  |

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

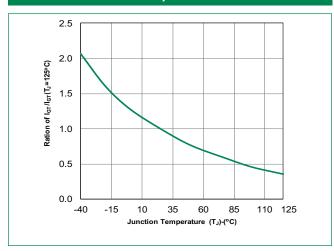



Figure 3: Normalized DC Holding Current vs. Junction Temperature

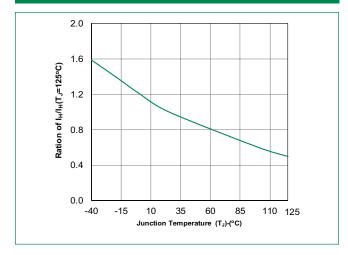



Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

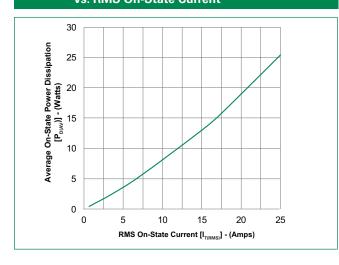



Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature

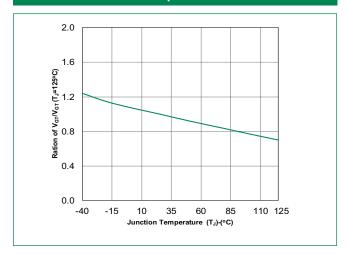



Figure 4: On-State Current vs. On-State Voltage (Typical)

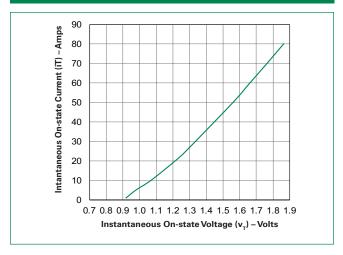



Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current

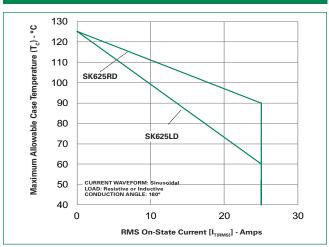



Figure 7: Maximum Allowable Case Temperature vs. Average On-State Current

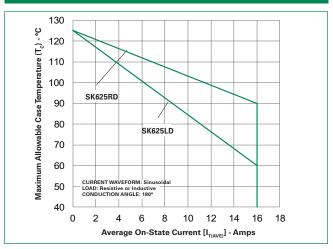
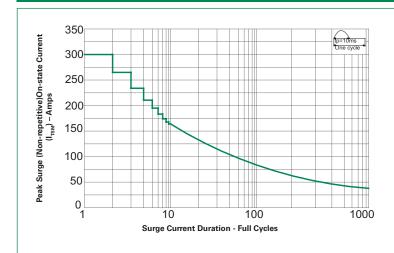




Figure 8: Surge Peak On-State Current vs. Number of Cycles



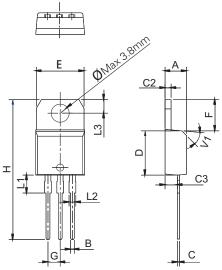
SUPPLY FREQUENCY: 50 Hz Sinusoidal

LOAD: Resistive

RMS On-State Current: [I<sub>T(RMS)</sub>]: Maximum Rated Value at Specified Case Temperature

#### Notes:

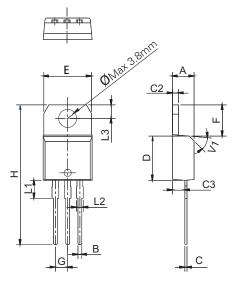
- 1. Gate control may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.


### **Environmental Specifications**

| Test                      | Specifications and Conditions                                               |
|---------------------------|-----------------------------------------------------------------------------|
| AC Blocking               | JESD22-A108C, 80% V <sub>DRM</sub> @125°C for 168 hours                     |
| Temperature Cycling       | MIL-STD-750, M-1051,<br>100 cycles; -40°C to +150°C;<br>15-min dwell-time   |
| Temperature/<br>Humidity  | EIA / JEDEC, JESD22-A101<br>168 hours; 100V - DC: 85°C;<br>85% rel humidity |
| Resistance to Solder Heat | JESD22-B106C                                                                |
| Solderability             | J-STD-022, category 3, test A                                               |

### **Design Considerations**

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.


### Dimensions — TO-220AB (RD-Package) — Non-Isolated Mounting Tab Common with Center Lead



Note: Maximum torque to be applied to mounting tab is 3 in-lbs (0.3Nm).

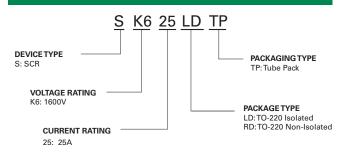
| Dimension   | Millimeters Inches |      |      |       |       |       |
|-------------|--------------------|------|------|-------|-------|-------|
| Difficusion | Min.               | Тур. | Max. | Min.  | Тур.  | Max.  |
| А           | 4.40               |      | 4.60 | 0.173 |       | 0.181 |
| В           | 0.61               |      | 0.88 | 0.024 |       | 0.035 |
| С           | 0.46               |      | 0.70 | 0.018 |       | 0.028 |
| C2          | 1.21               |      | 1.32 | 0.048 |       | 0.052 |
| C3          | 2.40               |      | 2.72 | 0.094 |       | 0.107 |
| D           | 8.60               |      | 9.70 | 0.339 |       | 0.382 |
| Е           | 9.60               |      | 10.4 | 0.378 |       | 0.409 |
| F           | 6.20               |      | 6.60 | 0.244 |       | 0.260 |
| G           |                    | 2.54 |      |       | 0.1   |       |
| Н           | 28.0               |      | 29.8 | 1.102 |       | 1.173 |
| L1          |                    | 3.75 |      |       | 0.148 |       |
| L2          | 1.14               |      | 1.70 | 0.045 |       | 0.067 |
| L3          | 2.65               |      | 2.95 | 0.104 |       | 0.116 |
| V1          |                    | 45°  |      |       | 45°   |       |

### Dimensions — TO-220AB (LD-Package) — Isolated Mounting Tab

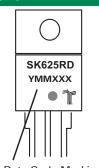


Note: Maximum torque to be applied to mounting tab is 7 in-lbs. (0.8 Nm).

| Dimension   | IV   | lillimeters | 3    | Inches |       |       |
|-------------|------|-------------|------|--------|-------|-------|
| Difficusion | Min. | Тур.        | Max. | Min.   | Тур.  | Max.  |
| А           | 4.40 |             | 4.60 | 0.173  |       | 0.181 |
| В           | 0.61 |             | 0.88 | 0.024  |       | 0.035 |
| С           | 0.46 |             | 0.70 | 0.018  |       | 0.028 |
| C2          | 1.21 |             | 1.32 | 0.048  |       | 0.052 |
| C3          | 2.40 |             | 2.72 | 0.094  |       | 0.107 |
| D           | 8.60 |             | 9.70 | 0.339  |       | 0.382 |
| Е           | 9.80 |             | 10.4 | 0.386  |       | 0.409 |
| F           | 6.55 |             | 6.95 | 0.258  |       | 0.274 |
| G           |      | 2.54        |      |        | 0.1   |       |
| Н           | 28.0 |             | 29.8 | 1.102  |       | 1.173 |
| L1          |      | 3.75        |      |        | 0.148 |       |
| L2          | 1.14 |             | 1.70 | 0.045  |       | 0.067 |
| L3          | 2.65 |             | 2.95 | 0.104  |       | 0.116 |
| V1          |      | 45°         |      |        | 45°   |       |


### **Product Selector**

| Part Number | Gate Sensitivity | Туре         | Package |
|-------------|------------------|--------------|---------|
| SK625LD     | 35mA             | Standard SCR | TO-220L |
| SK625RD     | 35mA             | Standard SCR | TO-220R |


### **Packing Options**

| Part Number | Marking | Weight | Packing Mode | Base Quantity |
|-------------|---------|--------|--------------|---------------|
| SK625LDTP   | SK625LD | 2.2g   | Tube         | 1000          |
| SK625RDTP   | SK625RD | 2.0g   | Tube         | 1000          |

### Part Numbering System



### **Part Marking System**



Date Code Marking Y:Year Code MM: Month Code XXX: Lot Trace Code