

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

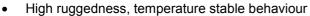
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

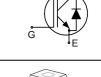
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China




High Speed IGBT in NPT-technology

- 30% lower *E*_{off} compared to previous generation
- Short circuit withstand time 10 μs
- Designed for operation above 30 kHz
- NPT-Technology for 600V applications offers:

 - parallel switching capability
 moderate E_{off} increase with temperature
 - very tight parameter distribution

- Pb-free lead plating; RoHS compliant
- Qualified according to JEDEC¹ for target applications
- Complete product spectrum and PSpice Models: http://www.infineon.com/igbt/

Туре	V _{CE}	Ic	E _{off}	T _j	Marking	Package
SKB15N60HS	600V	15A	200µJ	150°C	K15N60HS	PG-TO263-3-2

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CE}	600	V
DC collector current	I _C		А
$T_{\rm C} = 25^{\circ}{\rm C}$		27	
$T_{\rm C} = 100^{\circ}{\rm C}$		15	
Pulsed collector current, t_p limited by T_{jmax}	I _{Cpuls}	60	
Turn off safe operating area	-	60	
$V_{\text{CE}} \le 600\text{V}, \ T_{\text{j}} \le 150^{\circ}\text{C}$			
Diode forward current	I _F		
$T_{\rm C}$ = 25°C		40	
$T_{\rm C} = 100^{\circ}{\rm C}$		20	
Diode pulsed current, t_p limited by T_{jmax}	I _{Fpuls}	80	
Gate-emitter voltage static transient (t_p <1 μ s, D <0.05)	V _{GE}	±20 ±30	V
Short circuit withstand time ²⁾	tsc	10	μs
$V_{\rm GE}$ = 15V, $V_{\rm CC} \le 400$ V, $T_{\rm j} \le 150$ °C			
Power dissipation	P _{tot}	138	W
$T_{\rm C} = 25^{\circ}{\rm C}$			
Operating junction and storage temperature	T _j , T _{stg}	-55+150	°C
Time limited operating junction temperature for $t < 150h$	$T_{j(tl)}$	175	
Soldering temperature (reflow soldering, MSL1)	-	245	

¹ J-STD-020 and JESD-022

²⁾ Allowed number of short circuits: <1000; time between short circuits: >1s.

SKB15N60HS

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic		-		<u>'</u>
IGBT thermal resistance,	R _{thJC}		0.9	K/W
junction – case				
Diode thermal resistance,	R _{thJCD}		1.7	
junction – case				
Thermal resistance,	R_{thJA}		62	
junction – ambient				
SMD version, device on PCB ¹⁾	R _{thJA}		40	

Electrical Characteristic, at $T_{\rm j}$ = 25 °C, unless otherwise specified

Parameter	Symbol	Conditions		Value		Linit
Parameter	Symbol	Conditions	min.	Тур.	max.	Unit
Static Characteristic	Static Characteristic					
Collector-emitter breakdown voltage	$V_{(BR)CES}$	$V_{\rm GE}$ =0V, $I_{\rm C}$ =500 μ A	600	-	-	V
Collector-emitter saturation voltage	$V_{CE(sat)}$	$V_{\rm GE} = 15 \rm V, I_{\rm C} = 15 \rm A$				
		<i>T</i> _j =25°C		2.8	3.15	
		T _j =150°C		3.5	4.00	
Diode forward voltage	V_{F}	V_{GE} =0V, I_{F} =15A				
		<i>T</i> _j =25°C		1.5	2.0	
		T _j =150°C	-	1.5	2.0	
Gate-emitter threshold voltage	$V_{\rm GE(th)}$	$I_{\rm C} = 400 \mu A, V_{\rm CE} = V_{\rm GE}$	3	4	5	
Zero gate voltage collector current	I _{CES}	V _{CE} =600V, V _{GE} =0V				μΑ
		<i>T</i> _j =25°C	-	-	40	
		T _j =150°C	-	-	2000	
Gate-emitter leakage current	I _{GES}	V _{CE} =0V, V _{GE} =20V	-	-	100	nA
Transconductance	g_{fs}	$V_{\rm CE} = 20 \text{V}, I_{\rm C} = 15 \text{A}$	-	10		S

Power Semiconductors 2 Rev 2.3 Oct. 07

 $^{^{1)}}$ Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm 2 (one layer, 70 μm thick) copper area for collector connection. PCB is vertical without blown air.

Dynamic Characteristic

Input capacitance	Ciss	V _{CE} =25V,	-	810	p	oF
Output capacitance	Coss	$V_{GE}=0V$,	-	123		
Reverse transfer capacitance	Crss	<i>f</i> =1MHz	-	51		
Gate charge	Q _{Gate}	$V_{\rm CC}$ =480V, $I_{\rm C}$ =15A	-	80	r	nC
		V _{GE} =15V				
Internal emitter inductance	LE		-	7	r	ηH
measured 5mm (0.197 in.) from case						
Short circuit collector current ¹⁾	$I_{C(SC)}$	V_{GE} =15V, $t_{\text{SC}} \le 10 \mu \text{s}$ $V_{\text{CC}} \le 400 \text{V}$, $T_{\text{j}} \le 150 ^{\circ} \text{C}$	-	135	F	Α

Switching Characteristic, Inductive Load, at T_j =25 °C

Parameter	Symbol	Conditions		Value		Unit
raiailletei	Symbol	Conditions	min.	typ.	max.	Ullit
IGBT Characteristic						
Turn-on delay time	$t_{d(on)}$	T _j =25°C,	-	13		ns
Rise time	tr	$V_{CC} = 400 \text{V}, I_{C} = 15 \text{A},$ $V_{GE} = 0/15 \text{V},$	-	14		
Turn-off delay time	$t_{d(off)}$	$R_{\rm G}$ =23 Ω	-	209		
Fall time	t _f	$L_{\sigma}^{(2)} = 60 \text{nH},$	-	15		
Turn-on energy	Eon	$C_{\sigma}^{(2)} = 40 \text{ pF}$	-	0.32		mJ
Turn-off energy	E _{off}	Energy losses include "tail" and diode	-	0.21		
Total switching energy	E _{ts}	reverse recovery.	-	0.53		

Anti-Parallel Diode Characteristic

Diode reverse recovery time	t_{rr}	T _j =25°C,	-	111	ns
	$t_{\rm S}$	$V_{\rm R}$ =400V, $I_{\rm F}$ =15A,	-	27	
	t_{F}	$di_{\rm F}/dt$ =980A/ μ s	-	83	
Diode reverse recovery charge	Q _{rr}		-	580	nC
Diode peak reverse recovery current	I _{rrm}		-	14	A
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	di _{rr} /dt		-	520	A/μs

 $^{^{1)}}$ Allowed number of short circuits: <1000; time between short circuits: >1s. $^{2)}$ Leakage inductance $L_{\,\sigma}$ and Stray capacity $C_{\,\sigma}$ due to test circuit in Figure E.

Switching Characteristic, Inductive Load, at T_i =150 °C

Dovomotov	Cumbal	Conditions	Value			I Inia
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
IGBT Characteristic						
Turn-on delay time	$t_{d(on)}$	$T_j=150^{\circ}\text{C}$ $V_{CC}=400\text{V}, I_C=15\text{A},$ $V_{GE}=0/15\text{V},$	-	11		ns
Rise time	t_{r}		1	6		
Turn-off delay time	$t_{d(off)}$	$R_{\rm G} = 3.6\Omega$	-	72		
Fall time	t_{f}	$L_{\sigma}^{(1)}$ = 60 nH, $C_{\sigma}^{(1)}$ = 40 pF Energy losses include "tail" and diode reverse recovery.	-	26		
Turn-on energy	Eon		-	0.38		mJ
Turn-off energy	E _{off}		-	0.20		
Total switching energy	E _{ts}		1	0.58		
Turn-on delay time	$t_{d(on)}$	T _j =150°C	-	12		ns
Rise time	t _r	$V_{\rm CC} = 400 \text{V}, I_{\rm C} = 15 \text{A},$	-	15		
Turn-off delay time	$t_{d(off)}$	$V_{GE} = 0/15V$, $R_{G} = 23\Omega$	-	235		
Fall time	t _f	$L_{\sigma}^{(1)} = 60 \text{ nH},$ $C_{\sigma}^{(1)} = 40 \text{ pF}$ Energy losses include "tail" and diode	-	17		
Turn-on energy	Eon		-	0.48		mJ
Turn-off energy	E _{off}		-	0.30		
Total switching energy	E _{ts}	reverse recovery.	_	0.78		

Anti-Parallel Diode Characteristic

Diode reverse recovery time	t_{rr}	T _j =150°C	-	184	ns
	$t_{\rm S}$	V_{R} =400V, I_{F} =15A,	-	30	
	t_{F}	$di_F/dt=1070A/\mu s$	-	155	
Diode reverse recovery charge	Qrr		-	1320	nC
Diode peak reverse recovery current	I _{rrm}		-	18	А
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	di _{rr} /dt		-	360	A/μs

 $^{^{1)}}$ Leakage inductance L $_{\sigma}$ and Stray capacity C $_{\sigma}$ due to test circuit in Figure E.

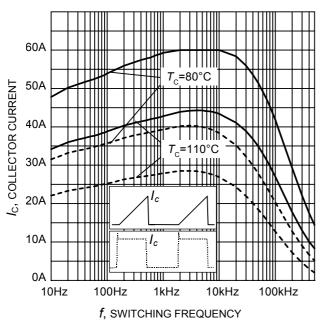


Figure 1. Collector current as a function of switching frequency $(T_j \le 150^{\circ}\text{C}, D = 0.5, V_{\text{CE}} = 400\text{V}, V_{\text{GE}} = 0/+15\text{V}, R_{\text{G}} = 23\Omega)$

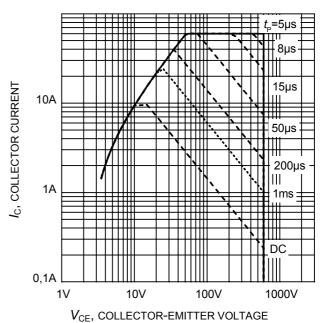


Figure 2. Safe operating area $(D = 0, T_C = 25^{\circ}C, T_i \le 150^{\circ}C; V_{GE} = 15V)$

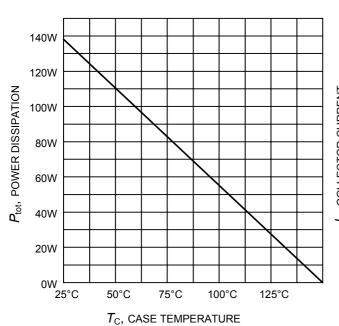


Figure 3. Power dissipation as a function of case temperature $(T_i \le 150^{\circ}\text{C})$

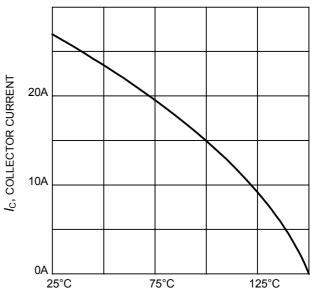


Figure 4. Collector current as a function of case temperature $(V_{GE} \le 15V, T_i \le 150^{\circ}C)$

 $T_{\rm C}$, CASE TEMPERATURE

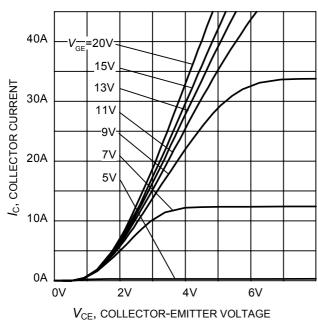


Figure 5. Typical output characteristic $(T_i = 25^{\circ}C)$

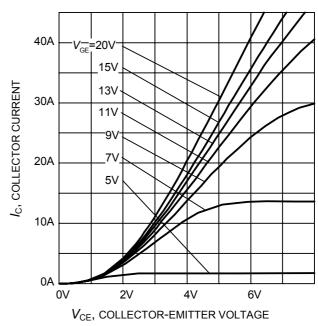


Figure 6. Typical output characteristic $(T_i = 150^{\circ}\text{C})$

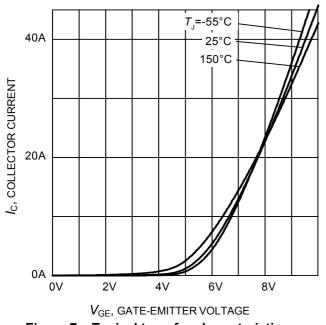
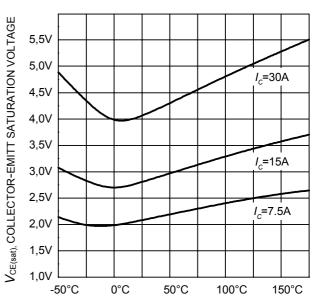



Figure 7. Typical transfer characteristic $(V_{CE}=10V)$

 $T_{\rm J}$, JUNCTION TEMPERATURE

Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature ($V_{\rm GE}$ = 15V)

Rev 2.3

Oct. 07

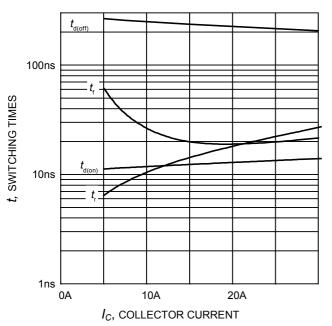


Figure 9. Typical switching times as a function of collector current (inductive load, T_J =150°C, V_{CE} =400V, V_{GE} =0/15V, R_G =23 Ω , Dynamic test circuit in Figure E)

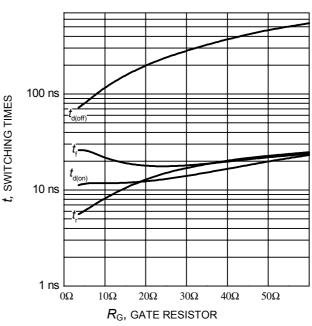


Figure 10. Typical switching times as a function of gate resistor (inductive load, T_J =150°C, V_{CE} =400V, V_{GE} =0/15V, I_C =15A, Dynamic test circuit in Figure E)

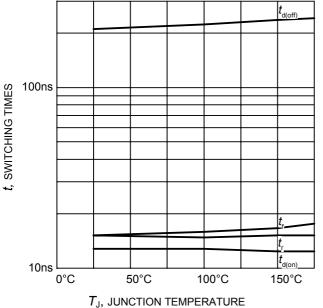


Figure 11. Typical switching times as a function of junction temperature (inductive load, V_{CE} =400V, V_{GE} =0/15V, I_{C} =15A, R_{G} =23 Ω , Dynamic test circuit in Figure E)

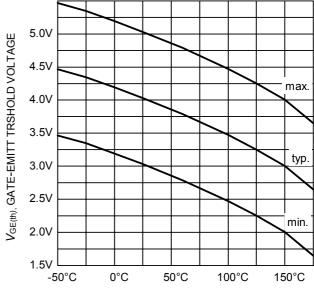


Figure 12. Gate-emitter threshold voltage as a function of junction temperature $(I_C = 0.5 \text{mA})$

 $T_{\rm J}$, JUNCTION TEMPERATURE

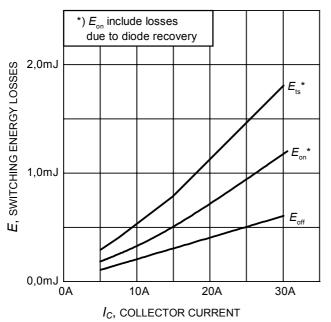


Figure 13. Typical switching energy losses as a function of collector current (inductive load, T_J =150°C, V_{CE} =400V, V_{GE} =0/15V, R_G =23 Ω , Dynamic test circuit in Figure E)

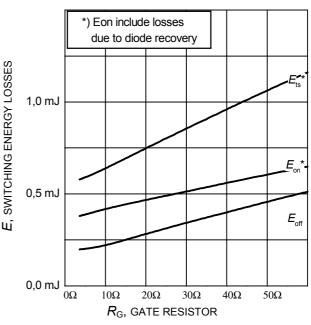
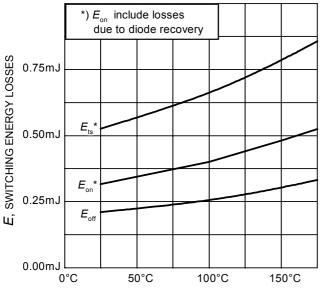
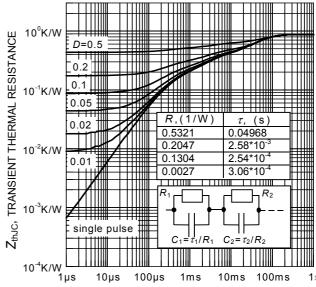




Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, T_J =150°C, V_{CE} =400V, V_{GE} =0/15V, I_C =15A, Dynamic test circuit in Figure E)

 $T_{
m J}$, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature

(inductive load, $V_{\rm CE}$ =400V, $V_{\rm GE}$ =0/15V, $I_{\rm C}$ =20A, $R_{\rm G}$ =23 Ω , Dynamic test circuit in Figure E)

 $t_{\rm P}$, PULSE WIDTH Figure 16. IGBT transient thermal resistance ($D = t_{\rm p} / T$)

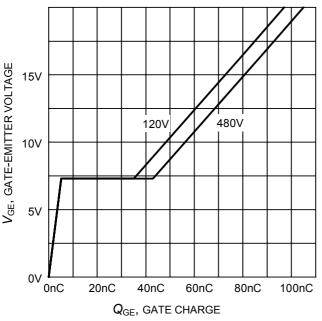


Figure 17. Typical gate charge $(I_C=15 \text{ A})$

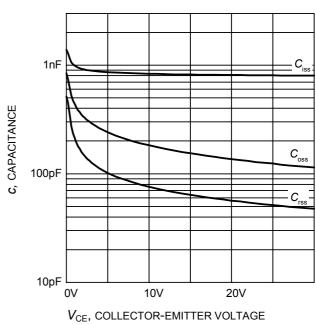


Figure 18. Typical capacitance as a function of collector-emitter voltage $(V_{GE}=0V, f=1 \text{ MHz})$

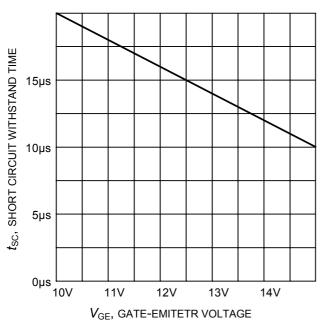


Figure 19. Short circuit withstand time as a function of gate-emitter voltage (V_{CE} =600V, start at T_J =25°C)

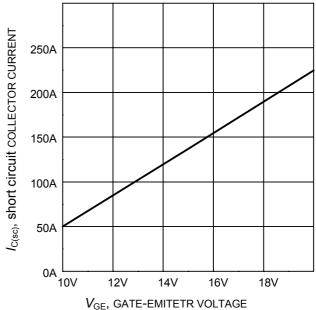


Figure 20. Typical short circuit collector current as a function of gate-emitter voltage $(V_{CE} \le 400 \text{V}, T_i \le 150 ^{\circ}\text{C})$

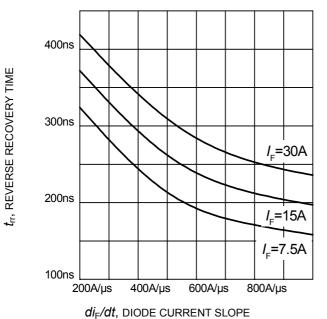
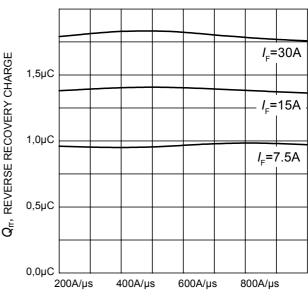



Figure 21. Typical reverse recovery time as a function of diode current slope (V_R =400V, T_J =150°C, Dynamic test circuit in Figure E)

 $di_{\rm F}/dt$, DIODE CURRENT SLOPE

Figure 22. Typical reverse recovery charge as a function of diode current slope

(V_R =400V, T_J =150°C, Dynamic test circuit in Figure E)

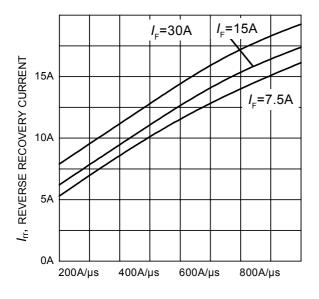
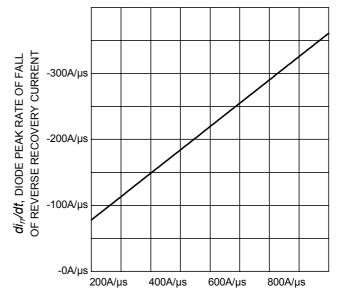



Figure 23. Typical reverse recovery current as a function of diode current slope

di_F/dt, DIODE CURRENT SLOPE

(V_R =400V, T_J =150°C, Dynamic test circuit in Figure E)

di_F/dt, DIODE CURRENT SLOPE

Oct. 07

Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (V_R=400V, T_J=150°C, Dynamic test circuit in Figure E)

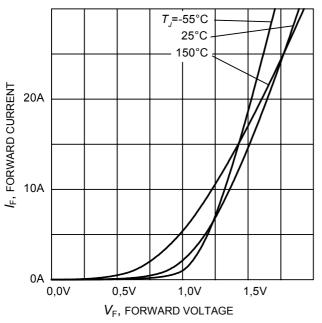


Figure 25. Typical diode forward current as a function of forward voltage

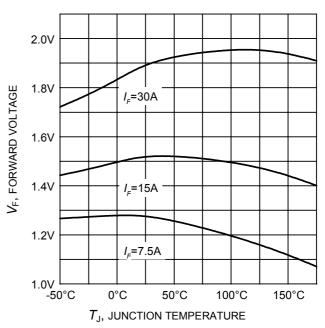


Figure 26. Typical diode forward voltage as a function of junction temperature

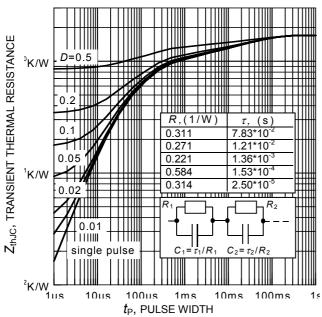
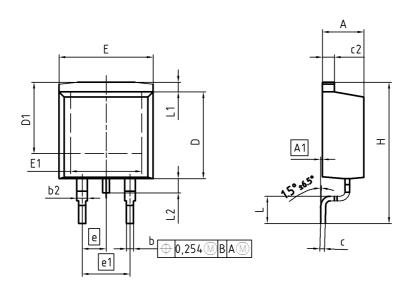
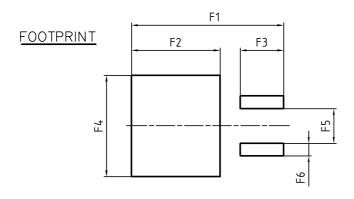
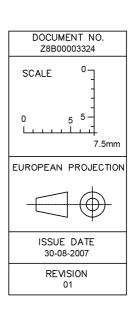
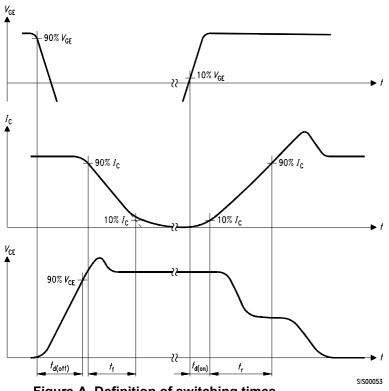




Figure 27. Diode transient thermal impedance as a function of pulse width $(D=t_P/T)$



PG-TO263-3-2



DIM	MILLIMI	ETERS	INCH	HES
DIM	MIN	MAX	MIN	MAX
Α	4.30	4.57	0.169	0.180
A1	0.00	0.25	0.000	0.010
Ь	0.65	0.85	0.026	0.033
b2	0.95	1.15	0.037	0.045
С	0.33	0.65	0.013	0.026
c2	1.17	1.40	0.046	0.055
D	8.51	9.45	0.335	0.372
D1	7.10	7.90	0.280	0.311
E	9.80	10.31	0.386	0.406
E1	6.50	8.60	0.256	0.339
е	2.5	54	0.1	00
e1	5.0)8	0.2	200
N		2		2
Н	14.61	15.88	0.575	0.625
L	2.29	3.00	0.090	0.118
L1	0.70	1.60	0.028	0.063
L2	1.00	1.78	0.039	0.070
F1	16.05	16.25	0.632	0.640
F2	9.30	9.50	0.366	0.374
F3	4.50	4.70	0.177	0.185
F4	10.70	10.90	0.421	0.429
F5	3.65	3.85	0.144	0.152
F6	1.25	1.45	0.049	0.057

di_ /dt $Q_{rr} = Q_{s} + Q_{p}$

Figure C. Definition of diodes switching characteristics

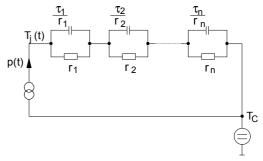


Figure A. Definition of switching times

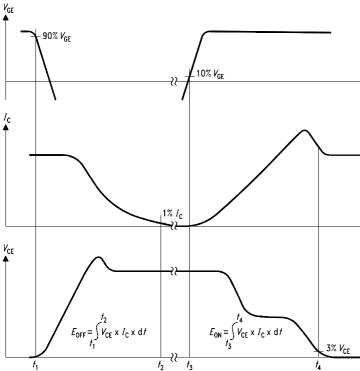


Figure D. Thermal equivalent circuit

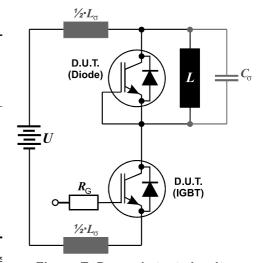


Figure B. Definition of switching losses

Figure E. Dynamic test circuit Leakage inductance L_{σ} =60nH and Stray capacity C_{σ} =40pF.

Published by

Edition 2006-01

Published by
Infineon Technologies AG
81726 München, Germany

© Infineon Technologies AG 11/6/07.
All Rights Reserved.

Attention please!

The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.