

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

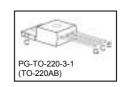
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode

- 75% lower $E_{
 m off}$ compared to previous generation combined with low conduction losses
- Short circuit withstand time 10 μs
- Designed for:
 - Motor controls
 - Inverter
- NPT-Technology for 600V applications offers:
 - very tight parameter distribution
 - high ruggedness, temperature stable behaviour
 - parallel switching capability
- Very soft, fast recovery anti-parallel EmCon diode
- Pb-free lead plating; RoHS compliant
- Qualified according to JEDEC¹ for target applications
- Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/

Туре	V_{CE}	I _C	V _{CE(sat)}	$T_{\rm j}$	Marking	Package
SKP02N60	600V	2A	2.2V	150°C	K06N60	PG-TO-220-3-1

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CE}	600	V
DC collector current	I _C		Α
$T_{\rm C}$ = 25°C		6.0	
$T_{\rm C}$ = 100°C		2.9	
Pulsed collector current, t_p limited by T_{jmax}	I _{Cpuls}	12	
Turn off safe operating area	-	12	
$V_{CE} \le 600 \text{V}, \ T_j \le 150^{\circ} \text{C}$			
Diode forward current	I _F		
$T_{\rm C}$ = 25°C		6.0	
$T_{\rm C} = 100^{\circ}{\rm C}$		2.9	
Diode pulsed current, t_p limited by T_{jmax}	I _{Fpuls}	12	
Gate-emitter voltage	V _{GE}	±20	V
Short circuit withstand time ²	tsc	10	μs
$V_{\rm GE}$ = 15V, $V_{\rm CC} \le 600$ V, $T_{\rm j} \le 150$ °C			
Power dissipation	P _{tot}	30	W
$T_{\rm C}$ = 25°C			
Operating junction and storage temperature	$T_{\rm j}$, $T_{ m stg}$	-55+150	°C
Soldering temperature	Ts	260	°C
wavesoldering, 1.6 mm (0.063 in.) from case for 10s			

¹ J-STD-020 and JESD-022

² Allowed number of short circuits: <1000; time between short circuits: >1s.

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				•
IGBT thermal resistance,	R _{thJC}		4.2	K/W
junction – case				
Diode thermal resistance,	R _{thJCD}		7	
junction – case				
Thermal resistance,	R _{thJA}	PG-TO-220-3-1	62	
junction – ambient				

Electrical Characteristic, at T_j = 25 °C, unless otherwise specified

Doromotor	Symbol	Conditions	Value			Unit
Parameter	Symbol	Conditions	min.	Тур.	max.	Unit
Static Characteristic						
Collector-emitter breakdown voltage	$V_{(BR)CES}$	$V_{\rm GE}$ =0V, $I_{\rm C}$ =500 μ A	600	-	-	V
Collector-emitter saturation voltage	V _{CE(sat)}	$V_{\rm GE} = 15 \rm V, I_{\rm C} = 2 \rm A$				
		<i>T</i> _j =25°C	1.7	1.9	2.4	
		T _j =150°C	-	2.2	2.7	
Diode forward voltage	V_{F}	$V_{GE} = 0V, I_{F} = 2.9A$				
		<i>T</i> _j =25°C	1.2	1.4	1.8	
		T _j =150°C	-	1.25	1.65	
Gate-emitter threshold voltage	$V_{GE(th)}$	$I_{\rm C} = 150 \mu A, V_{\rm CE} = V_{\rm GE}$	3	4	5	1
Zero gate voltage collector current	I _{CES}	V _{CE} =600V, V _{GE} =0V				μΑ
		<i>T</i> _j =25°C	-	-	20	
		T _i =150°C	-	-	250	
Gate-emitter leakage current	I _{GES}	V _{CE} =0V, V _{GE} =20V	-	-	100	nA
Transconductance	g fs	$V_{CE} = 20V, I_{C} = 2A$	-	1.6	-	S
Dynamic Characteristic						
Input capacitance	Ciss	V _{CE} =25V,	-	142	170	pF
Output capacitance	Coss	V _{GE} =0V,	-	18	22	1
Reverse transfer capacitance	C _{rss}	<i>f</i> =1MHz	-	10	12	
Gate charge	Q _{Gate}	V _{CC} =480V, I _C =2A	-	14	18	nC
		V _{GE} =15V				
Internal emitter inductance	LE		-	7	-	nΗ
measured 5mm (0.197 in.) from case						
Short circuit collector current ²⁾	I _{C(SC)}	$V_{\text{GE}} = 15 \text{V}, t_{\text{SC}} \le 10 \mu \text{s}$ $V_{\text{CC}} \le 600 \text{V},$	-	20	-	А
		$T_{\rm j} \leq 150^{\circ} \rm C$				

 $^{^{2)}}$ Allowed number of short circuits: <1000; time between short circuits: >1s.

Switching Characteristic, Inductive Load, at T_j =25 °C

Parameter	Symbol	Conditions	Value			Unit
raiametei	Syllibol	Conditions	min.	typ.	max.	Ollit
IGBT Characteristic						
Turn-on delay time	$t_{d(on)}$	<i>T</i> _j =25°C,	-	20	24	ns
Rise time	t_{r}	$V_{CC} = 400 \text{V}, I_{C} = 2 \text{A}, V_{GE} = 0/15 \text{V},$	1	13	16	
Turn-off delay time	$t_{d(off)}$	$R_{\rm G}$ =118 Ω ,	-	259	311	
Fall time	t_{f}	$L_{\sigma}^{(1)} = 180 \text{nH},$	-	52	62	
Turn-on energy	Eon	$C_{\sigma}^{1)}$ = 180 pF Energy losses include	-	0.036	0.041	mJ
Turn-off energy	E _{off}	"tail" and diode	-	0.028	0.036	
Total switching energy	Ets	reverse recovery.	-	0.064	0.078	
Anti-Parallel Diode Characteristic						
Diode reverse recovery time	t_{rr}	<i>T</i> _j =25°C,	-	130	-	ns
	$t_{\rm S}$	V_{R} =200V, I_{F} =2.9A,	-	12	-	
	t_{F}	$di_{\rm F}/dt$ =200A/ μ s	-	118	-	
Diode reverse recovery charge	Qrr		-	65	-	nC
Diode peak reverse recovery current	I _{rrm}		-	1.9	-	Α
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	di _{rr} /dt		-	180	-	A/μs

Switching Characteristic, Inductive Load, at T_j =150 °C

Parameter	Symbol	Conditions	Value			Unit
Farameter	Symbol	Conditions	min.	typ.	max.	Oilit
IGBT Characteristic						
Turn-on delay time	$t_{d(on)}$	T _j =150°C	-	20	24	ns
Rise time	tr	$V_{\rm CC}$ =400V, $I_{\rm C}$ =2A,	-	14	17	
Turn-off delay time	$t_{d(off)}$	$V_{\rm GE}$ =0/15V,	-	287	344	
Fall time	tf	$R_{\rm G} = 118\Omega$,	-	67	80	
Turn-on energy	Eon	$L_{\sigma}^{1)} = 180 \text{nH},$ $C_{\sigma}^{1)} = 180 \text{pF}$	-	0.054	0.062	mJ
Turn-off energy	E _{off}	Energy losses include	-	0.043	0.056	
Total switching energy	Ets	"tail" and diode reverse recovery.	-	0.097	0.118	
Anti-Parallel Diode Characteristic	•					
Diode reverse recovery time	t_{rr}	T _j =150°C	-	150	-	ns
	ts	V_{R} =200V, I_{F} =2.9A,	-	19	-	
	t_{F}	$di_F/dt=200A/\mu s$	-	131	-	
Diode reverse recovery charge	Q _{rr}		-	150	-	nC
Diode peak reverse recovery current	I _{rrm}		-	3.8	-	Α
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	di _{rr} /dt		-	200	-	A/μs

Sep 07

 $^{^{1)}}$ Leakage inductance L $_{\sigma}$ and Stray capacity C $_{\sigma}$ due to dynamic test circuit in Figure E.

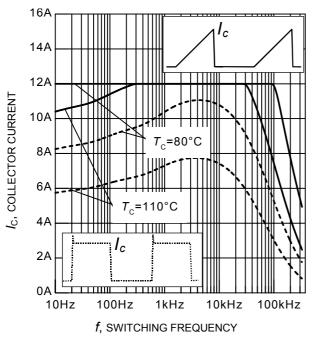


Figure 1. Collector current as a function of switching frequency

 $(T_i \le 150^{\circ}\text{C}, D = 0.5, V_{CE} = 400\text{V},$ $V_{\rm GE} = 0/+15 \text{V}, R_{\rm G} = 118 \Omega$)

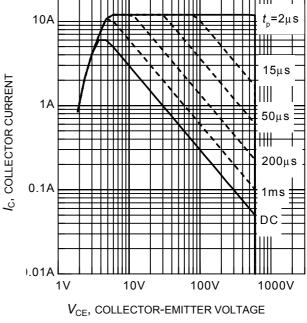


Figure 2. Safe operating area $(D = 0, T_{\rm C} = 25^{\circ}{\rm C}, T_{\rm i} \le 150^{\circ}{\rm C})$

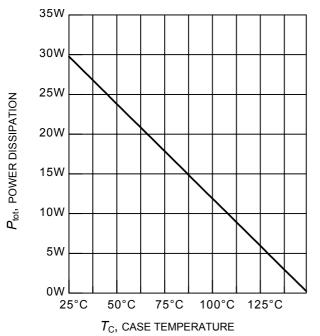


Figure 3. Power dissipation (IGBT) as a function of case temperature

 $(T_i \le 150^{\circ}\text{C})$

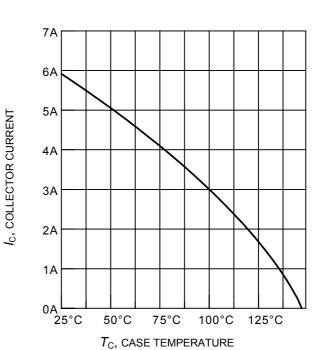


Figure 4. Collector current as a function of case temperature

 $(V_{GE} \le 15V, T_j \le 150^{\circ}C)$

4

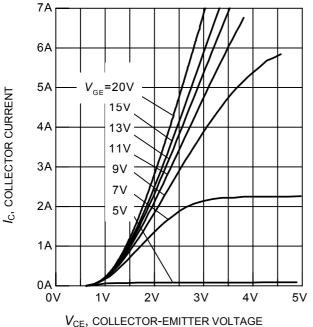


Figure 5. Typical output characteristics $(T_i = 25^{\circ}C)$

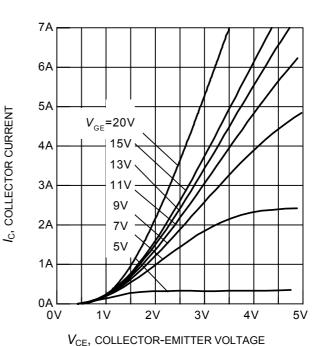


Figure 6. Typical output characteristics ($T_i = 150^{\circ}\text{C}$)

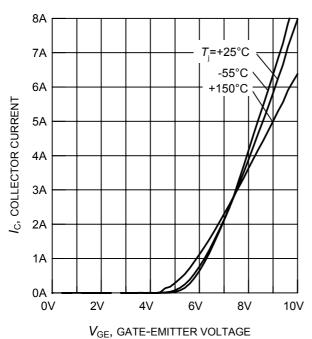
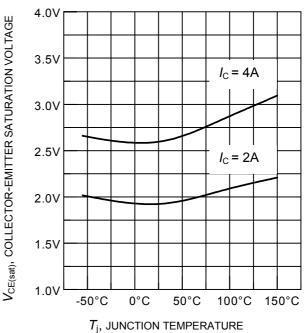
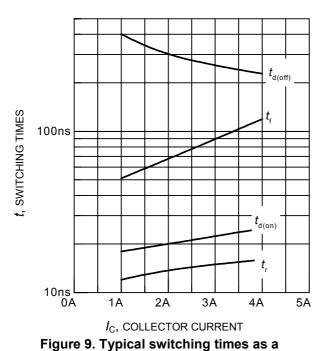
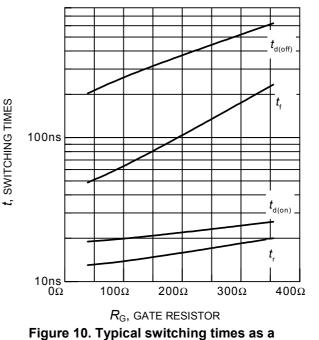


Figure 7. Typical transfer characteristics $(V_{CE} = 10V)$


Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature ($V_{GE} = 15V$)

function of collector current (inductive load, $T_j = 150$ °C, $V_{CE} = 400$ V, $V_{GE} = 0/+15$ V, $R_G = 118\Omega$, Dynamic test circuit in Figure E)

function of gate resistor (inductive load, T_j = 150°C, V_{CE} = 400V, V_{GE} = 0/+15V, I_C = 2A, Dynamic test circuit in Figure E)

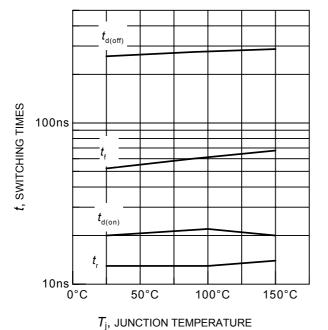


Figure 11. Typical switching times as a function of junction temperature (inductive load, $V_{CE} = 400V$, $V_{GE} = 0/+15V$, $I_{C} = 2A$, $R_{G} = 118\Omega$, Dynamic test circuit in Figure E)

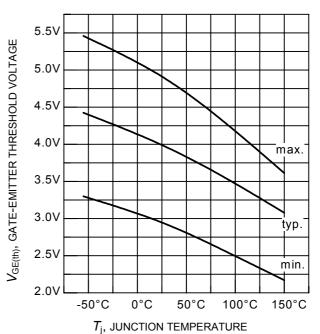


Figure 12. Gate-emitter threshold voltage as a function of junction temperature ($I_C = 0.15 \text{mA}$)

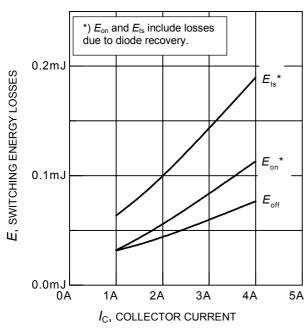


Figure 13. Typical switching energy losses as a function of collector current (inductive load, T_j = 150°C, V_{CE} = 400V, V_{GE} = 0/+15V, R_G = 118 Ω , Dynamic test circuit in Figure E)

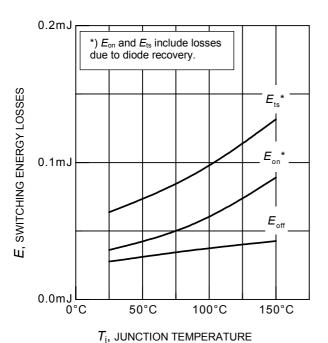


Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, $V_{\rm CE}$ = 400V, $V_{\rm GE}$ = 0/+15V, $I_{\rm C}$ = 2A, $R_{\rm G}$ = 118 Ω , Dynamic test circuit in Figure E)

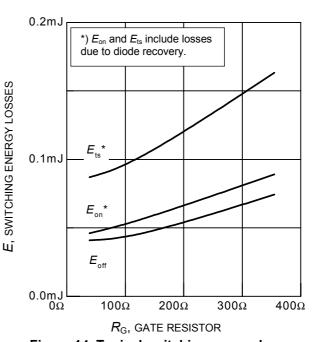
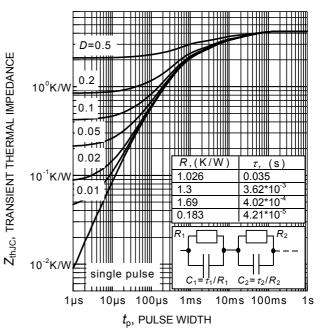
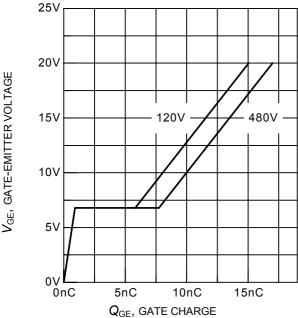
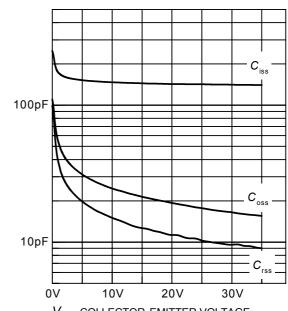


Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, $T_j = 150^{\circ}\text{C}$, $V_{\text{CE}} = 400\text{V}$, $V_{\text{GE}} = 0/+15\text{V}$, $I_{\text{C}} = 2\text{A}$, Dynamic test circuit in Figure E)


Figure 16. IGBT transient thermal impedance as a function of pulse width $(D = t_0 / T)$

 $$Q_{\rm GE},\,{\rm GATE}\,{\rm CHARGE}$$ Figure 17. Typical gate charge $(\emph{I}_{\rm C}=2A)$

C, CAPACITANCE

 $V_{\rm CE}$, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage ($V_{\rm GE}=0\rm{V}$, $f=1\rm{MHz}$)

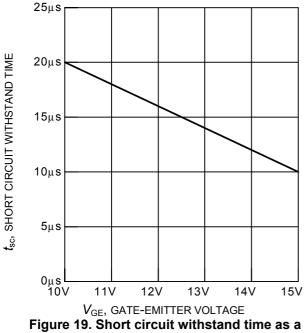
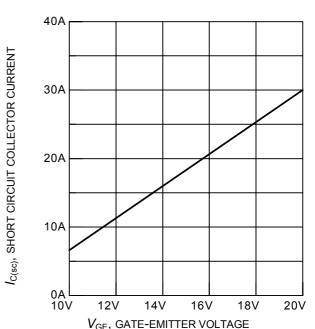
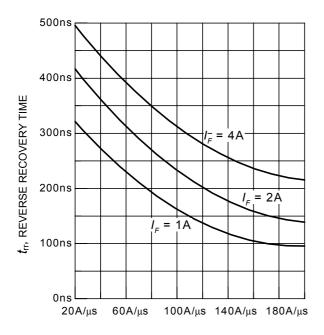




Figure 19. Short circuit withstand time as a function of gate-emitter voltage ($V_{CE} = 600V$, start at $T_i = 25$ °C)

 $V_{\rm GE}$, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage ($V_{\rm CE} \leq 600 \, V$, $T_{\rm i} = 150 \, ^{\circ} \rm C$)

 $di_{\rm F}/dt$, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope ($V_{\rm P}$ = 200V. $T_{\rm i}$ = 125°C.

(V_R = 200V, T_j = 125°C, Dynamic test circuit in Figure E)

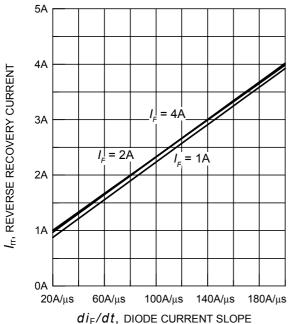
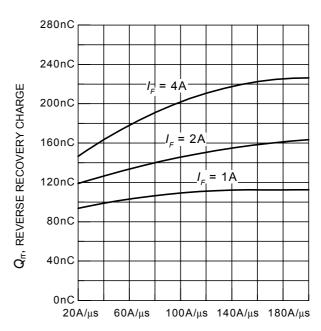



Figure 23. Typical reverse recovery current as a function of diode current slope ($V_R = 200V$, $T_j = 125$ °C, Dynamic test circuit in Figure E)

 $di_{\rm F}/dt$, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope ($V_{\rm R}$ = 200V, $T_{\rm j}$ = 125°C, Dynamic test circuit in Figure E)

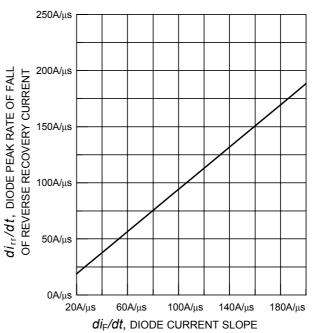
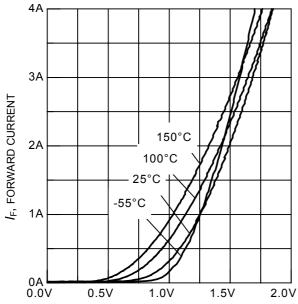
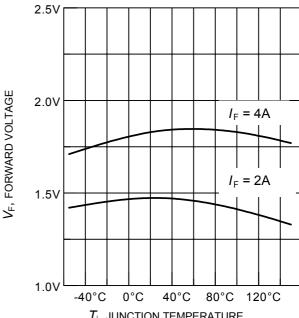
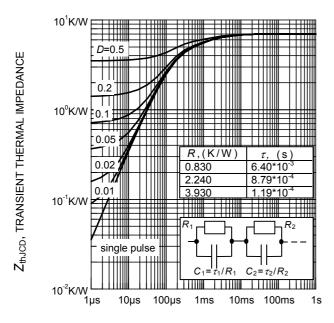



Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope

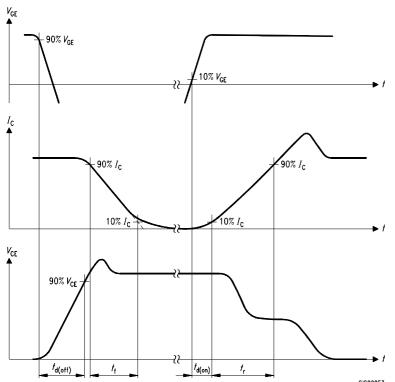

(V_R = 200V, T_j = 125°C, Dynamic test circuit in Figure E)



 $$V_{\rm F}$, FORWARD VOLTAGE \hfigure 25. Typical diode forward current as a function of forward voltage$

 $T_{\rm j}$, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature

 $t_{\rm p},~{\rm PULSE~WIDTH}$ Figure 27. Diode transient thermal impedance as a function of pulse width ($D=t_{\rm p}$ / T)


PG-TO220-3-1

DIM	MILLIM	ETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	4.30	4.57	0.169	0.180		
A1	1.17	1.40	0.046	0.055		
A2	2.15	2.72	0.085	0.107		
ь	0.65	0.86	0,026	0.034		
ь1	0.95	1.40	0.037	0.055		
ь2	0.95	1.15	0,037	0.045		
ь3	0,65	1,15	0,026	0,045		
С	0.33	0.60	0.013	0.024		
D	14.81	15.95	0.583	0.628		
D1	8.51	9.45	0.335	0.372		
D2	12.19	13.10	0.480	0.516		
E	9.70	10.36	0.382	0.408		
E1	6,50	8,60	0,256	0.339		
e	2.5	64	0.100			
e1	5.0	18	0.200			
N		3	3			
H1	5.90	6.90	0.232	0.272		
L	13.00	14.00	0.512	0.551		
L1	-	4.80	-	0.189		
øР	3.60	3.89	0.142	0.153		
Q	2.60	3.00	0.102	0.118		

i, v di_{F} / dt $t_{rr} = t_{S} + t_{F}$ $Q_{rr} = Q_{S} + Q_{F}$ t_{rr} t_{rr} Q_{F} / dt Q_{F} / dt

Figure C. Definition of diodes switching characteristics

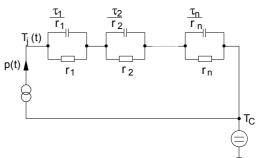


Figure A. Definition of switching times

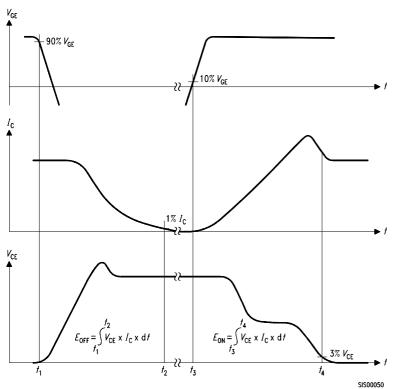


Figure D. Thermal equivalent circuit

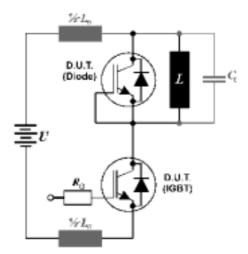


Figure B. Definition of switching losses

Figure E. Dynamic test circuit Leakage inductance L_{σ} =180nH and Stray capacity C_{σ} =180pF.

SKP02N60

Edition 2006-01

Published by Infineon Technologies AG 81726 München, Germany

© Infineon Technologies AG 9/12/07. All Rights Reserved.

Attention please!

The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (**www.infineon.com**).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.