Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China ### **DATA SHEET** # SKY13354-368LF: 0.1 to 3.0 GHz Dual SPDT Crossed Switch # **Applications** Cellular infrastructures ### **Features** - Broadband frequency range: 0.1 GHz to 3.0 GHz - Positive voltage control: 1.6 V to 5.0 V - Low insertion loss - High isolation - High P0.2dB - Ultra-miniature, QFN (12-pin, 2 x 2 mm) package (MSL1, 260 °C per JEDEC J-STD-020) Skyworks GreenTM products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green*TM, document number SQ04-0074. Figure 2. SKY13354-368LF Pinout (Top View) Figure 1. SKY13354-368LF Block Diagram ## **Description** The SKY13354-368LF is a pHEMT GaAs dual single-pole, double-throw (SPDT) crossed switch designed for cellular infrastructure band switching applications. The internal crossed switch arrangement is designed to switch balanced RF filters. Switching is controlled by two control voltage inputs (V1 and V2). Depending on the logic voltage level applied to the control pins, the RFCA and RFCB pins are each connected to one of four switched RF outputs (RF1A, RF1B, RF2A, or RF2B) using a low insertion loss path, while maintaining a high isolation path to the alternate port DC blocking capacitors are required on all RF ports. The switch is a "reflective short" on the isolated port. The switch is manufactured in a compact, 2 x 2 mm, 12-pin exposed pad plastic Quad Flat No-Lead (QFN) package. A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1. **Table 1. SKY13354-368LF Signal Descriptions** | Pin | Name | Description | Pin | Name | Description | |-----|------|--|-----|------|--| | 1 | RF1B | RF port 1B. Must be DC blocked for proper operation. | 7 | RFCB | RF common port B (antenna). Must be DC blocked for proper operation. | | 2 | N/C | No connection. May be connected to ground with no change in performance. | 8 | N/C | No connection. May be connected to ground with no change in performance. | | 3 | RF2A | RF port 2A. Must be DC blocked for proper operation. | 9 | RFCA | RF common port A (antenna). Must be DC blocked for proper operation. | | 4 | RF2B | RF port 2B. Must be DC blocked for proper operation. | 10 | N/C | No connection. May be connected to ground with no change in performance. | | 5 | V1 | DC control voltage 1. See Table 5. | 11 | V2 | DC control voltage 2. See Table 5. | | 6 | N/C | No connection. May be connected to ground with no change in performance. | 12 | RF1A | RF port 1A. Must be DC blocked for proper operation. | Note: Bottom ground paddle must be connected to ground through a low impedance path. ### **Electrical and Mechanical Specifications** The absolute maximum ratings of the SKY13354-368LF are provided in Table 2. The recommended operating conditions are specified in Table 3 and electrical specifications are provided in Table 4. Typical performance characteristics of the SKY13354-368LF are illustrated in Figures 3 through 8. The state of the SKY13354-368LF is determined by the logic provided in Table 5. **Table 2. SKY13354-368LF Absolute Maximum Ratings** | Parameter | Symbol | Minimum | Maximum | Units | |-----------------------|--------|---------|---------|-------| | Input power | Pin | | +30 | dBm | | Control voltage | V1, V2 | | 6 | V | | Storage temperature | Тѕтс | -40 | +125 | °C | | Operating temperature | Тор | -40 | +85 | °C | **Note:** Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device. **CAUTION**: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times. **Table 3. SKY13354-368LF Recommended Operating Conditions** | Parameter | Symbol | Minimum | Typical | Maximum | Units | |--------------------------|--------------|---------|---------|---------|-------| | Frequency | f | 0.1 | | 3.0 | GHz | | Control voltage (V1, V2) | V CTL | 1.6 | 3.0 | 5.0 | V | Table 4. SKY13354-368LF Electrical Specifications (Note 1) (V1 = V2 = 0 V and +2.7 V, T_{OP} = +25 °C, P_{IN} = 0 dBm, Characteristic Impedance [Z₀] = 50 Ω , Unless Otherwise Noted) | Parameter | Symbol | Test Condition | Min | Typical | Max | Units | |-----------------------------------|------------------|---|----------------|---------------------------------|----------------------|---------------------------------| | RF Specifications | · | | | | | | | Insertion loss | IL | RFCA to RF1A/2A,
RFCB to RF1B/2B,
Vctl = 1.6 to 5.0 V: | | | | | | | | 0.1 to 1.0 GHz
1.0 to 2.0 GHz
2.0 to 3.0 GHz | | 0.40
0.50
0.55 | 0.55
0.65
0.90 | dB
dB
dB | | Isolation | Iso | RFCA to RF1A/2A,
RFCB to RF1B/2B,
Vctl = 1.6 to 5.0 V: | | | | | | | | 0.1 to 1.0 GHz
1.0 to 2.0 GHz
2.0 to 3.0 GHz | 24
25
20 | 29
30
32 | | dB
dB
dB | | Return loss | IS11I | 0.1-3.0 GHz,
Vctl = 1.6 to 5.0 V | 15 | 22 | | dB | | 0.2 dB compression point | P0.2dB | 0.1-3.0 GHz: | | | | | | | | $V_{CTL} = 1.6 \text{ V}$ $V_{CTL} = 1.8 \text{ V}$ $V_{CTL} = 2.0 \text{ V}$ $V_{CTL} = 2.7 \text{ V}$ $V_{CTL} = 5.0 \text{ V}$ | | +17
+20
+23
+28
+33 | | dBm
dBm
dBm
dBm
dBm | | Third order input intercept point | IIP3 | 0.1-3.0 GHz, $\Delta f = 1$ MHZ,
P _{IN} = +15 dBm/tone | | +55 | | dBm | | Switching speed | | 50% Vctl to 90/10% RF,
90/10% RF or 10/90% RF | | 40
40 | | ns
ns | | DC Specifications | | | | | | | | Control voltage:
Low
High | Vctl_l
Vctl_h | | -0.2
1.6 | 0
2.7 | +0.2
5.0 | V
V | | Control current | Icc | | | 5 | | μА | Note 1: Performance is guaranteed only under the conditions listed in this table. # **Typical Performance Characteristics** (V1 = V2 = 0 V and +1.6 V, T_{OP} = +25 °C, P_{IM} = 0 dBm, Characteristic Impedance [Z₀] = 50 Ω , Unless Otherwise Noted) Figure 3. Insertion Loss vs Frequency **Figure 4. Isolation vs Frequency** Figure 5. Isolation vs Frequency (RFCA to RFCB) **Figure 6. Return Loss vs Frequency** **Figure 7. Normalized Insertion Loss vs Input Power** Figure 8. P0.2dB vs Temperature Table 5. SKY13354-368LF Truth Table | V1 (Pin 5) | V2 (Pin 11) | Insertion Loss Paths | |------------|-------------|------------------------------| | 1 | 0 | RFCA to RF1A
RFCB to RF1B | | 0 | 1 | RFCA to RF2A
RFCB to RF2B | Note: "1" = +1.6 V to +5 V. "0" = 0 V to +0.2 V. Any state other than described in this table places the switch into an undefined state. An undefined state will not damage the device. ### **Evaluation Board Description** The SKY13354-368LF Evaluation Board is used to test the performance of the SKY13354-368LF Dual SPDT Switch. An Evaluation Board schematic diagram is provided in Figure 9. An assembly drawing for the Evaluation Board is shown in Figure 10. ### **Package Dimensions** The PCB layout footprint for the SKY13354-368LF is provided in Figure 11. Typical part markings are shown in Figure 12. Package dimensions are shown in Figure 13, and tape and reel dimensions are provided in Figure 14. ## **Package and Handling Information** Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly. The SKY13354-368LF is rated to Moisture Sensitivity Level 1 (MSL1) at 260 °C. It can be used for lead or lead-free soldering. For additional information, refer to the Skyworks Application Note, *Solder Reflow Information*, document number 200164. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format. Figure 9. SKY13354-368LF Evaluation Board Schematic Figure 10. SKY13354-368LF Evaluation Board Assembly Diagram Figure 11. SKY13354-368LF PCB Layout Footprint (Top View) Figure 12. Typical Part Markings (Top View) ### DATA SHEET • SKY13354-368LF: DUAL SPDT CROSSED SWITCH Figure 13. SKY13354-368LF 12-Pin QFN Package Dimensions ts737 ### Notes: - Carrier tape must meet all requirements of Skyworks GP01-D232 procurement spec for tape and reel shipping. Carrier tape shall be black conductive polycarbonate bakeable material at 125 °C temperature. - 3. Cover tape shall be transparent conductive with 5.40 mm width. - 4. ESD-surface resistivity must meet all ESD requirements of Skyworks specified on GP01-D232. 5. All measurements are in millimeters. Figure 14. SKY13354-368LF Tape and Reel Dimensions ### **Ordering Information** | Model Name | Manufacturing Part Number | Evaluation Board Part Number | |---|---------------------------|------------------------------| | SKY13354-368LF Dual SPDT Crossed Switch | SKY13354-368LF | SKY13354-368LF-EVB | Copyright © 2010-2015 Skyworks Solutions, Inc. All Rights Reserved. Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes. No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale. Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters. Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.