: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

SL20 with remote shut-down

SL20.115

- Input: AC $115 / 230 \mathrm{~V}$ auto select
- Output: $24 . . .28 \mathrm{~V} / 480 \mathrm{~W}$ (600W)
- 90% efficiency
- Ideal for parallel operation
- Remote shut-down

Datasheet

Input

Input voltage	AC $100-120 \mathrm{~V} / 220-240 \mathrm{~V}$, $47-63 \mathrm{~Hz}$, auto select
Rated tolerances - Continuous operation - Short-term (1 min) at $24 \mathrm{~V} / 20 \mathrm{~A}$	AC 85...132V resp. AC 184...264V AC 85... 140 V resp. AC 170...280V
Input current I_{n}	<10A (115V range); <5A (230V range)
Inrush current limiting with active bypass of the limiting resistor (NTC).	
Inrush current I_{pk}	$\begin{aligned} & <18 \mathrm{~A} @ \mathrm{AC} 264 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \text {, cold start }\right) \\ & <37 \mathrm{~A} @ \mathrm{AC} 264 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{amb}}=+50^{\circ} \mathrm{C} \text {, cold start }\right) \end{aligned}$
Fuse loading $\mathrm{l}^{2} \mathrm{t}$	$\begin{aligned} & <5 \mathrm{~A}^{2} \mathrm{~s}\left(\mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \text { cold start }\right) \\ & <8 \mathrm{~A}^{2} \mathrm{~s}\left(\mathrm{~T}_{\mathrm{amb}}=+50^{\circ} \mathrm{C} \text {, cold start }\right) \end{aligned}$

To be fused with a 16A, B-type 'circuit-breaker' switch based on the usual thermomagnetic overload sensing principle (used anyway to fuse the input lines).
EN 61000-3-2 (harmonic current emissions [PFC]) is fulfilled

Transient handling	Transient resistance acc. to VDE $0160 / \mathrm{W} 2$ $(750 \mathrm{~V} / 1.3 \mathrm{~ms})$, for all load conditions.
Hold-up time	30 ms at $24 \mathrm{~V} / 20 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}_{\text {in }}$
	30 ms at $24 \mathrm{~V} / 20 \mathrm{~A}, \mathrm{AC} 120 \mathrm{~V}_{\text {in }}$
	15 ms at $24 \mathrm{~V} / 20 \mathrm{~A}, \mathrm{AC} 100 \mathrm{~V}_{\text {in }}$

Efficiency, Reliability

Efficiency	typ. 90.5\% (AC 230V, 24V/20A)
Losses	typ. 50W (AC 230V, 24V/20A)
MTBF	519.000h acc. to Siemensnorm SN29500 $\left(24 \mathrm{~V} / 20 \mathrm{~A}, 230 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}\right.$)
Life cycle (electrolytics)	The unit exclusively uses longlife electrolytics, specified for $+105^{\circ} \mathrm{C}$ (cf. 'The SilverLine', p.2). High reliability, as - only five aluminium electrolytics and - no small aluminium electrolytics are used.

Further information

Further information, especially about

- EMC, Connections, Safety, Approvals, Mechanics and Mounting see page 2 of the "The SilverLine" data sheet.
- For detailed dimensions see SilverLine mechanics data sheet SL20.

Output (signal terminals see overleaf)

Output voltage	DC $24 \ldots . .28 \mathrm{~V}$, adjustable by (covered) front pan- el potentiometer. Adjust. range guaranteed.
Output noise Radiated EMI values below EN50081-1, even suppression when using long, unscreened output cables.	
Ambient temperature	Operation: $0^{\circ} \mathrm{C} . . .+70^{\circ} \mathrm{C}\left(>60^{\circ} \mathrm{C}\right.$: Derating) range $\mathrm{T}_{\mathrm{amb}}$
Storage: $-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$	

Rated continuous loading with convection cooling:

- $\mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C}-60^{\circ} \mathrm{C} \quad 24 \mathrm{~V} / 20 \mathrm{~A}$ resp. $28 \mathrm{~V} / 18 \mathrm{~A}$ short-term (<30s) 24V/25A resp. 28V/22A

Derating	$12 \mathrm{~W} / \mathrm{K} \quad$ (at $\left.\mathrm{T}_{\mathrm{amb}}=60-70^{\circ} \mathrm{C}\right)$
Voltage regulation	better than 2% over all
Ripple	(incl. spikes (20MHz bandw.), 50Ω measurem.
- Output charact. S	$<20 \mathrm{mV}_{\mathrm{PP}}(<0.1 \%)$
- Output charact. P	$<40 \mathrm{mV}_{\mathrm{PP}}$ (In: AC 230 V, Out: $\left.24 \mathrm{~V} / 20 \mathrm{~A}\right)$
(S/P: Single/Parallel Mode)	$<100 \mathrm{mV} \mathrm{PPP}_{\mathrm{PP}}$ (In: AC 184V, Out: $\left.24 \mathrm{~V} / 20 \mathrm{~A}\right)$

Over-voltage protection At $33 \mathrm{~V} \pm 10 \%$: switch to hiccup mode
Front panel indicators:

- Green LED on, when $\mathrm{V}_{\text {out }}>\mathrm{U}_{\mathrm{T}}$, where U_{T} is appr. 2 V below $\mathrm{V}_{\text {out }}$ adjusted (24V...28V)
- Red LED on, when $\mathrm{V}_{\text {out }}<\mathrm{U}_{\mathrm{T}}$

Parallel operation Yes, up to ten SL20
To achieve current sharing the output V/I characteristic can be altered to be 'softer' (25 V at $0.4 \mathrm{~A}, 24 \mathrm{~V}$ at 20A). This is done by repositioning an external bridge connection (without opening the unit).
Power Back Immunity max. 30V

Construction / Mechanics

Housing dimensions and Weight

- W×HxD $220 \mathrm{~mm} \times 124 \mathrm{~mm} \times 102 \mathrm{~mm}$ (+ DIN rail)
- Free space for above/below 70 mm recommended ventilation left/right 25 mm recommended
- Weight $2,5 \mathrm{~kg}$
Design advantages:
- All connection blocks are easy to reach as mounted on the front panel.
- PVC insulated cable can be used for all connections, as the connection blocks are mounted in the cooler area on the underside of the unit.

Order information

Order number

Description

Start / Overload Behaviour

Startup delay

 typ. 0.55sRise time appr. 20-80ms, depending on load

Overload behaviour Puls Overload Design (see right-hand diagram)

Advantages:

- No disconnection/hiccup, thus overloading is possible also for a longer period of time (load start-up), ideal for parallel operation.
- High overload/short-circuit current due to straight characteristic; each bias point of the V/I characteristic extends 20A.
Advantage: Due to the high and continuously supplied overload current the unit starts reliably even with awkward loads (DC-DC converters, motors). No 'sticking' can occur as, for example, with fold-back characteristics, and secondary fuses trigger more reliably.

Signal terminals

The remote On/off control is activated via the signal terminals 'Remote Shutdown 1 and 2 '. The unit is delivered with the signal terminals jumpered (control state is 'On' with the terminals jumpered)

a) Remote shut-down by switch:

Unit turns on when the signal terminals 'Remote Shutdown 1 and 2' are closed by a switch ($\mathrm{R}<10 \Omega$)

- Connect the switch contact with the signal terminals Remote Shutdown 1 and 2, only! Ensure the switch contact is not connected to the output voltage or in contact with any separate voltages.
- Unit is in standby mode with open switch contact ($\mathrm{R}>100 \mathrm{k} \Omega$)

b) Remote shut-down by control voltage:

Positive voltage is applied to 'Remote Shutdown 1' against minus output (reference potential)

- Unit turns on, when positive voltage ($3 \ldots . .30 \mathrm{~V}, 0.3 . .2 \mathrm{~mA}$) is applied to 'Remote Shutdown 1' against the minus output
- Unit switches off at $<0.6 \mathrm{~V}$
- Input voltages of $0.6 . . .3 \mathrm{~V}$ and negative voltages are not defined

Parallel operation / cascading of outputs:

- Use a multi-pole switch with one switch contact for each power supply unit (1 x On); connection of the signal terminals with one switch contact is not permissible when being used in parallel operation

Additional control features with parallel operation:

Unit turns on:

- positive voltage (4...30V) is applied to 'Remote Shutdown 1' against negative output voltage

Unit switches off:

- $0 . . .0 .5 \mathrm{~V}$ in is applied to 'Remote Shutdown 1 '

Note:

- Connection of the terminals 'Remote Shutdown 1' is possible with parallel operation; do not use the terminals 'Remote Shutdown 2'
- Only connect the signalling lines at one single point of the negative output voltage; a voltage drop between the connection point and the minus terminals must not exceed 0.5 V , even at maximum load!

Additional data regarding remote shut-down:

- Output current
$<5 \mathrm{~mA}$ (mean)
- Power consumption $<2.5 \mathrm{~W}$
- Residual voltage at zero load $<3 \mathrm{~V}$
- Startup delay
- Switching operations per min.

Output characteristic (typ.)

Efficiency (typ., at $\mathrm{V}_{\text {out }}=24 \mathrm{~V}$)

Hold-up time (min., at $\mathrm{V}_{\text {out }}=24 \mathrm{~V}$)

Unless otherwise stated, specifications are valid for AC 230 V input voltage, $+25^{\circ} \mathrm{C}$ ambient temperature, and 5 min . run-in time. They are subject to change without prior notice.

Your partner in power supply:

