

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

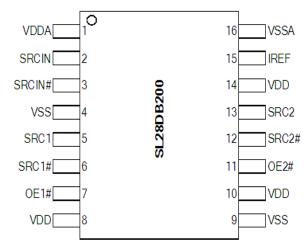
100 MHz Differential Buffer for PCI Express and SATA

Features

- · Two differential 0.7V clock output pairs
- · OE# input for enabling SRC outputs
- · Individual OE controls
- Low CTC jitter (< 50 ps)
- Spread Aware
- · 3.3V operation
- Industrial Temperature Grade -40°C to +85°C
- 16-pin TSSOP package

Functional Description

The SL28DB200 is a differential buffer capable of distributing the Serial Reference Clock (SRC) for PCI Express Gen2 and SATA implementations. The buffer enables the application system to control the distribution of the SRC.


Applications

- · Network/Media Attached Storage
- · Routers/IP Gateways
- · Multi-function Printers

Block Diagram

OE1# OE2# Output Control Output Buffer SRC1 \Rightarrow SRC1 \Rightarrow SRC1# SRCIN \Rightarrow SRC2 \Rightarrow SRC2#

Pin Configuration

16 TSSOP

Pin Description

Pin	Name	Туре	Description
2,3	SRCIN, SRCIN#	I,DIF	0.7V Differential inputs
5,6,13,12	SRC[1:2], SRC[1:2]#	O,DIF	0.7V Differential Clock Outputs
7,11	OE[1:2]#	I,SE	3.3V LVTTL input for enabling differential outputs
15	IREF	I	A precision resistor 475 ohm is attached to this pin to set the differential output current
1	VDDA	PWR	3.3V Power Supply
16	VSSA	GND	Ground
8,10,14	VDD	PWR	3.3V power supply for outputs
4,9	VSS	GND	Ground for outputs

Notes: I=Input, O=Output, DIF=Differential signal, SE=Single Ended, PWR=Power input, GND=Ground

Table 1. Buffer Power-up State Machine

State	Description
S0	3.3V Buffer power off
S1	After 3.3V supply is detected to rise above 1.8V - 2.0V, the buffer enters state 1 and initiates a 0.2-ms-0.3-ms delay
S2	Buffer waits for a valid clock on the SRCIN input
S3	Once a valid input is detected, the buffer enters state 3 and enables outputs for normal operation

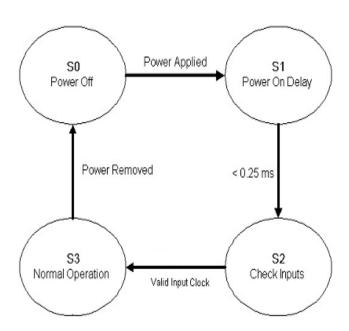


Figure 1. Buffer Power-up State Diagram

Output Enable Clarification

OE# functionality allows for enabling and disabling individual outputs. OE1# and OE2# are Active LOW inputs. Disabling the outputs may be implemented by deasserting the OE# input pin. If the OE# pin is deasserted, the output of interest will be tri-stated. (The assertion and deassertion of this signal is absolutely asynchronous.)

OE Assertion

All differential outputs that were tri-stated will resume normal operation in a glitch-free manner. The maximum latency from the assertion to active outputs is between 2–6 SRC clock periods. In addition, SRC clocks will be driven high within 15 ns of OE# assertion to a voltage greater than 200 mV

OE Deassertion

The impact of deasserting OE# is that each corresponding output will transition from normal operation to tri-state in a glitch-free manner. The maximum latency from the deassertion to tri-stated outputs is between 2–6 DIF clock periods.

Table 2. OE Functionality

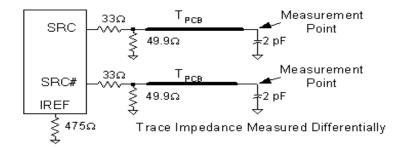
OE#	SRC,SRC#	
0	Enable	
1	Tri-State	

Absolute Maximum Conditions

Parameter	Description	Condition	Min.	Max.	Unit
VDD	Core Supply Voltage		-0.5	4.6	V
VDDA	Analog Supply Voltage		-0.5	4.6	V
V _{IN}	Input Voltage	Relative to V _{SS}	-0.5	V _{DD} + 0.5	VDC
T _S	Temperature, Storage	Non-functional	-65	+150	°C
T _A	Temperature, Operating Ambient (Commercial Grade)	Functional	0	85	°C
T _A	Temperature, Operating Ambient (Industrial Grade)	Functional	-40	85	°C
T _J	Temperature, Junction	Functional		150	°C
ESD _{HBM}	ESD Protection (Human Body Model)	JEDEC (JESD 22 - A114)	2000	-	V
UL-94	Flammability Rating	UL (Class)	V	- 0	
MSL	Moisture Sensitivity Level			1	

DC Electrical Specifications

Parameter	Description	Condition	Min.	Max.	Unit
VDDA _, VDD	3.3V Operating Voltage	3.3 ± 5%	3.135	3.465	V
V_{IL}	3.3V Input Low Voltage		$V_{SS} - 0.5$	0.8	V
V _{IH}	3.3V Input High Voltage		2.0	V _{DD} + 0.5	V
I _{IL}	Input Low Leakage Current	except internal pull-up resistors, 0 < V _{IN} < V _{DD}	- 5		μΑ
I _{IH}	Input High Leakage Current	except internal pull-down resistors, $0 < V_{IN} < V_{DD}$		5	μΑ
C _{IN}	Input Pin Capacitance		1.5	5	pF
C _{OUT}	Output Pin Capacitance			6	pF
L _{IN}	Pin Inductance		_	7	nH
I _{DD3.3V}	Dynamic Supply Current	At max. load, Full Active, at 100MHz	_	60	mA


AC Electrical Specifications

All measurements at VDD (typical) = 3.3V, $T_A = 25^{\circ}C$ unless otherwise stated

Parameter	Description	Condition	Min.	Max.	Unit
SRCIN at 0	.7V				
T _{PERIOD}	Average Period	Measured at crossing point V _{OX}	9.9970	10.0533	ns
T _{ABSMIN-IN}	Absolute minimum clock periods	Measured at crossing point V _{OX}	9.8720		ns
T _R / T _F	SRC and SRC# Rise and Fall Times	Single ended measurement: $V_{OL} = 0.175$ to $V_{OH} = 0.525V$ (Averaged)	0.6	4	V/ns
V _{IH}	Differential Input High Voltage		150		mV
V_{IL}	Differential Input Low Voltage			-150	mV
V _{OX}	Crossing Point Voltage at 0.7V Swing	Single-ended measurement	250	550	mV
ΔV_{OX}	Vcross Variation over all edges	Single-ended measurement		140	mV
V_{RB}	Differential Ringback Voltage		-100	100	mV
T _{STABLE}	Time before ringback allowed		500		ps
V_{MAX}	Absolute maximum input voltage			1.15	V
V _{MIN}	Absolute minimum input voltage		-0.3		V
T _{DC}	SRC and SRC# Duty Cycle	Measured at crossing point V _{OX}	45	55	%
T _{RFM}	Rise/Fall Matching	Determined as a fraction of $2*(T_R - T_F)/(T_R + T_F)$	_	20	%
SRC at 0.7	V				
F _{IN}	Input Frequency		90	210	MHz
F _{ERROR}	Input/Output Frequency Error		_	0	ppm
T_{DC}	SRC and SRC# Duty Cycle	Measured at crossing point V _{OX}	45	55	%
T _{PERIOD}	Average Period	Measured at crossing point V _{OX} at 100 MHz	9.9970	10.0533	ns
T _R / T _F	SRC[1:2] and SRC[1:2]# Rise and Fall Times	Single-ended measurement: $V_{OL} = 0.175$ to $V_{OH} = 0.525V$ (Averaged)	175	700	ps
T _{RFM}	Rise/Fall Matching	Determined as a fraction of $2 * (T_R - T_F)/(T_R + T_F)$	_	20	%
$\Delta T_R/\Delta T_F$	Rise and Fall Time Variation Variation	Single-ended measurement: $V_{OL} = 0.175$ to $V_{OH} = 0.525V$ (Real Time)	-	125	ps
V _{HIGH}	Voltage High	Single-ended measurement	660	850	mv
V_{LOW}	Voltage Low	Single-ended measurement	-150	_	mv
V_{OX}	Crossing Point Voltage at 0.7V Swing	Single-ended measurement	250	550	mv
ΔV_{OX}	Vcross Variation over all edges	Single-ended measurement	_	140	mV
V _{OVS}	Maximum Overshoot Voltage	Single-ended measurement	_	V _{HIGH} + 0.3	٧
V _{UDS}	Minimum Undershoot Voltage	Single-ended measurement	_	-0.3	V
V _{RB}	Ring Back Voltage	Single-ended measurement	0.2	N/A	V
T _{CCJ}	Cycle to Cycle Jitter	Jitter is additive	_	50	ps
T _{SKEW}	Any SRC/SRC# to SRC/SRC# Clock Skew	Measured at crossing point V _{OX}	-	50	ps
T _{PD}	Input to output skew	Measured at crossing point V _{OX}	2.5	4.5	ns

Test and Measurement Setup

Figure 1. Differential Clock Termination

Switching Waveforms

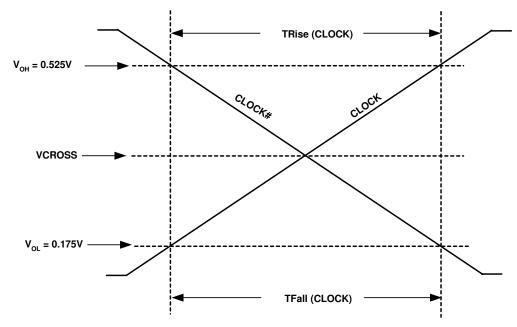


Figure 2. Single-Ended Measurement Points for TRise and TFall

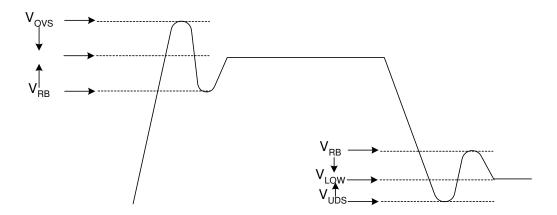


Figure 3. Single-ended Measurement Points for $V_{\text{OVS}}, V_{\text{UDS}}$ and V_{RB}

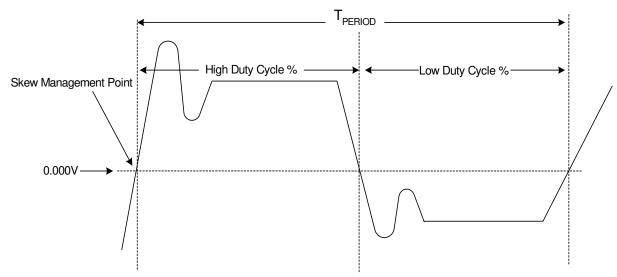
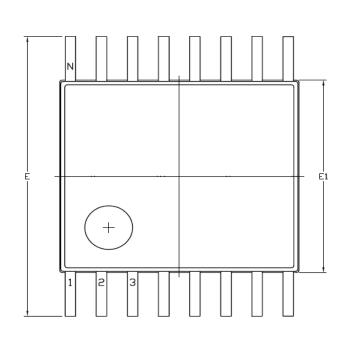
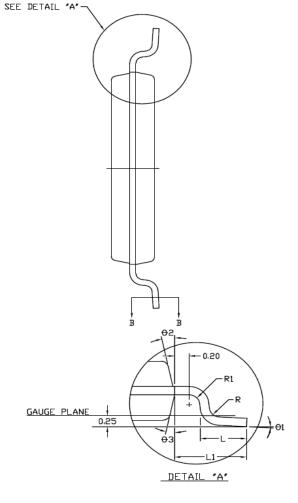
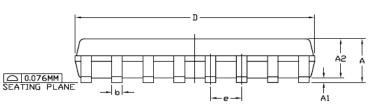


Figure 4. Differential (Clock-Clock#) Measurement Points (Tperiod, Duty Cycle and Jitter)

Ordering Information


Ordering Code	Package Type	Operating Range	
Lead-free			
SL28DB200AZC	16-pin TSSOP	Commercial, 0°C to 85°C	
SL28DB200AZCT	16-pin TSSOP—(Tape and Reel)	Commercial, 0°C to 85°C	
SL28DB200AZI	16-pin TSSOP	Industrial, -40°C to 85°C	
SL28DB200AZIT	16-pin TSSOP—(Tape and Reel)	Industrial, -40°C to 85°C	


Note: All oderables are Lead-free and RoHS compliant



Package Drawing and Dimensions

16-Lead Thin Shrunk Small Outline Package

DIMENSION IN MM DIMENSION IN INCH

SYMBUL	DIMEN	1SIDN	IN MM	DIMEN	ISION I	N INCH
2 IMBUL	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α			1.20			.047
A1	0.05		0.15	.002		.006
A2	0.80	0.90	1.05	.031	.035	.041
b	0.19		0.30	.007		.012
b1	0.19	0.22	0.25	.007	.009	.010
c	0.09		0.20	.004		.008
c 1	0.09		0.16	.004		.006
D	4,90	5.00	5.10	.193	.197	.200
е	0.65 BSC.			.026 BSC.		
E	6.	40 BS	C.	.252 BSC.		
E1	4,30	4.40	4.50	.169	.173	.177
L	0.50	0.60	0.75	.020	.024	.030
L1	1.00 REF.		- .	.0	39 REF	₹.
R	0.09			.004		
R1	0.09			.004		
0 1	0		8	0		8
92	12 REF			1	2 REF	

<u> </u>	-b-	<u> </u>			
C		⊂1			
Ŧ	b1	1			
SECTION B-B					

NDTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSION 'D' DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.
- 3. DIMENSION 'E1' DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION, INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.
- 4. 'N' IS THE NUMBER OF TERMINAL POSITIONS.
- 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- 6. REFERENCE DRAWING JEDEC MO-153, VARIATION AB.

12 REF

12 REF

03

Document History Page

AA

09/27/10

TRP

Document Title: SL28DB200 PCI Express Gen2 and SATA Differential Buffer

Document #: 38-07722 Rev *C

REV. | ECR# | Issue Date | Orig. of Change | Description of Change |

1.0 | 06/17/10 | TRP | Initial Release

Updated Dynamic Supply Current

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.