mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Oct.2010

Features

- Built-in IGBT and diode bridge of partial switching PFC circuit Enable to reduce mounting area
- Low saturation voltage IGBT VCE(sat) = 1.7V max
- Low saturation voltage diode bridge VF = 1.1V max
- The clip lead is adopted for inner lead. Low inductance, low resistance, high current capability The smoke generation and explosion are less likely to occur in case of destruction.

Applications

Partial switching PFC

Absolute maximum ratings

Equivalent circuit

		Τ)	a=25□)	
Characteristic	Symbol	Ratings	Unit	
Collector to Emitter Voltage	VCES	600	V	
Gate to Emitter Voltage	VGE	±30	V	
Continuous Collector Current	IC(DC)	30	А	
Pulsed Collector Current	IC (pulse) * 1	100	А	
Diode Peak Reverse Voltage	VRM	600	V	
Diode Forward Current	IF	25	А	
Diode Peak Surge Forward Current	IFSM ^{× 2}	200	А	
Diode I ² t Limiting Value	$I^2 t^{\times 3}$	200	A ² s	
Maximum Allowable Power Dissipation	PT ^{≭ 4}	5 (No.Fin Ta= 25° C)	w	
		92 (Tc=25°C)		
Thermal Resistance	θj-a ^{≭ 4}	25 (Junction-to-Ambient)	°C /W	
	θj-c ^{≭ 4}	1.36 (Junction-to-Case)	°C /W	
	θj-c IGBT	3.91 (Junction-to-Case,IGBT 1 Element Operation)	°C /W	
	θj-c Di	8.33 (Junction-to-Case,Di 1 Element Operation)	°C /W	
Isolation Voltage	VISO	1500 (Between Fin and Lead Pin, 1minute AC)	Vrms	
Operating Junction Temperature	Tj	150	°C	
Storage Temperature	Tstg	-40 ~ 150	°C	
\approx 1. PW ≤ 10µs, Duty ≤ 1%	× 2. PW ≦ 101	ms, Half sinewave, 1shot	·	

The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.

SILA5227

Oct.2010

• IGBT					(Ta=25°C	.)
Characteristic	Symbol	Test Conditions		Limits		unit
			min	typ	max	uiiit
Collector to Emitter Breakdown Voltage	V(BR)CES	IC= 100µA, VGE=0V	600			v
Gate to Emitter Leakage Current	IGES	$VGE=\pm 30V$			±500	nA
Collector to Emitter Leakage Current	ICES	VCE= 600V,VGE=0V			100	μΑ
Gate Threshold Voltage	VGE(th)	VCE= 10V,ID=1mA	3		6	V
Collector to Emitter Saturation Voltage	VCE(sat)	VGE=15V,IC= 30A		1.3	1.7	V
Collector to Emitter Saturation Voltage	VCE(sat)	VGE=15V,IC= 50A		1.6		v
Input Capacitance	Cies	VCE=20V f=1.0MHz VGE=0V		2500		pF
Output Capacitance	Coes			150		
Reverse Transfer Capacitance	Cres			80		
Turn-On Delay Time	td(on)	IC=50A VCE ≒ 300V RG=39Ω VGE=±15V See fig.1		80		ns
Rise Time	tr			190		
Turn-Off Delay Time	td(off)			120		
Fall Time	tf			320		

• Di			(Ta=25°C)			
Characteristic	Symbol	Test Conditions	Limits			
			min	typ	max	
Forward Voltage Drop	VF	IF= 12.5A			1.1	
Reverse Leakage Current	IR	VR=600V			50	
Reverse Leakage Current Under High Temperature	H·IR	VR=600V,Tj=150°C			200	

The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use ; nor for any infringements of patents or other rights of third parties that may result from its use.

Oct.2010

VCE(sat) - Tc (typical)

Capa - VCE (typical)

IC - VGE (typical)

VCE,VGE - Qg (typical)

The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.

Copy Right: SANKEN ELECTRIC CO.,LTD.

Sanken SANKEN ELECTRIC SLA5227

Oct.2010

Tc=- 40°C 1000 S WT ime (ns) tf 100 tdoff tdon tr R Load VCE=300V VGE=± 15V RG=39Ω 10 100 1 10 IC (A)

SWTime - IC (typical)

SWTime - IC (typical)

SWTime - IC (typical)

The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.

Copy Right: SANKEN ELECTRIC CO., LTD.

Oct.2010

The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.

Copy Right: SANKEN ELECTRIC CO.,LTD.

http://www.sanken-ele.co.jp

Sanken SANKEN ELECTRIC S L A 5 2 2 7

Oct.2010

Electrical characteristics

The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use ; nor for any infringements of patents or other rights of third parties that may result from its use.

Oct.2010

Fig.1 Switching Time Test Method

(a) Test Circuit

(b) Waveforms

The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use ; nor for any infringements of patents or other rights of third parties that may result from its use.

Oct.2010

Outline

Weight Approx. 6g

The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use ; nor for any infringements of patents or other rights of third parties that may result from its use.

2

3 4