# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





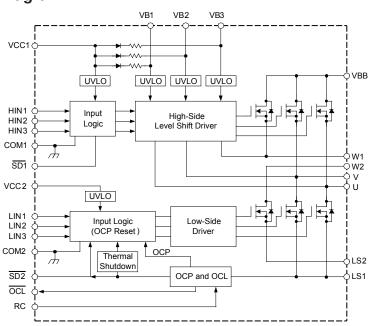
#### **Features and Benefits**

- Built-in pre-drive IC
- MOSFET power element
- Alleviate noise generation by adjusting an internal resistor
- CMOS compatible input (5 V)
- High-side gate driver using bootstrap circuit or floating power supply
- Built-in protection circuit for controlling power supply voltage drop (UVLO on VCC)
- Overcurrent protection (OCP), overcurrent limiting (OCL), and thermal shutdown (TSD)
- Output of fault signal during operation of protection circuit
- Output current 1.5, 2.5, or 3 A
- Small SIP (SLA 24-pin)

#### **Packages: Power SIP**



#### Description


The SLA6868MZ and SLA6870MZ inverter power module (IPM) ICs provide a robust, highly-integrated solution for optimally controlling 3-phase motor power inverter systems and variable speed control systems used in energy-conserving designs to drive motors of residential and commercial appliances. These ICs take 230 VAC input voltage, and up to 3 A (continuous) output current. They can withstand voltages of up to 500 V (MOSFET breakdown voltage).

The SLA power package includes an IC with all of the necessary power elements (six MOSFETs), pre-driver ICs (two), and bootstrap diodes (three), needed to configure the main circuit of an inverter. This enables the main circuit of the inverter to be configured with fewer external components than traditional designs.

Applications include residential white goods (home applications) and commercial appliance motor control:

- Air conditioner fan
- Small ventilation fan
- Dishwasher pump

#### **Functional Block Diagram**



A. <u>SD1</u>, <u>SD2</u> terminals are used for both input and output.

B. SD1, SD2, and OCL terminals are open-collector output. RC terminal is open-drain input.

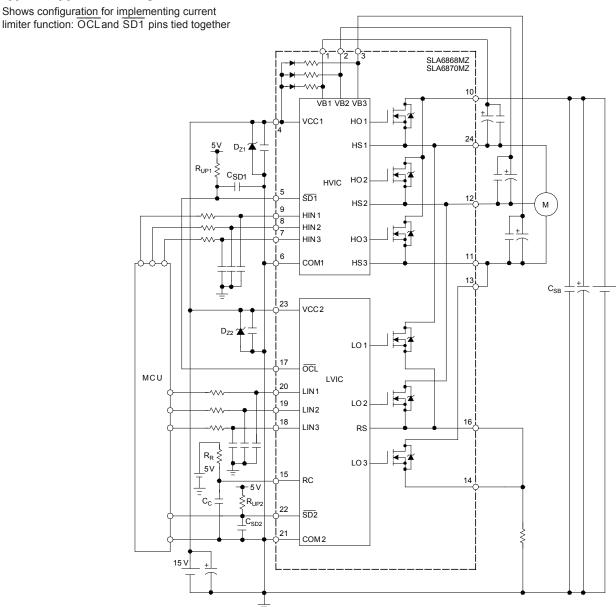
C. Blanking Time ( $t_{blank}$ ) is used in Overcurrent Limiting (OCL) and Overcurrent Protection (OCP). If the time exceeds the limit, the signal will be output (open-collector output turns on), and protection operation will start up.

Figure 1. Driver block diagram.

#### **Selection Guide**

|             | MOSFET Breakdown                       | Output Current                          |                                      |  |  |
|-------------|----------------------------------------|-----------------------------------------|--------------------------------------|--|--|
| Part Number | Voltage, V <sub>DSS</sub> (min)<br>(V) | Continuous, I <sub>O</sub> (max)<br>(A) | Pulsed, I <sub>OP</sub> (max)<br>(A) |  |  |
| SLA6868MZ   | 500                                    | 2.5                                     | 3.75                                 |  |  |
| SLA6870MZ   | 500                                    | 3                                       | 4.5                                  |  |  |

#### Absolute Maximum Ratings, valid at T<sub>A</sub> = 25°C


| Characteristic                               | Symbol           |                                   | Remarks                                                         | Rating     | Unit |
|----------------------------------------------|------------------|-----------------------------------|-----------------------------------------------------------------|------------|------|
| MOSFET Breakdown Voltage                     | V <sub>DSS</sub> | $V_{CC}$ = 15 V, I <sub>D</sub> = | $V_{CC}$ = 15 V, I <sub>D</sub> = 100 µA, V <sub>IN</sub> = 0 V |            | V    |
| Logic Supply Voltage                         | V <sub>CC</sub>  | Between VCC a                     | and COM                                                         | 20         | V    |
| Bootstrap Voltage                            | V <sub>BS</sub>  | Between VB and                    | d HS (U,V, and W phases)                                        | 20         | V    |
| Output Current Continuous                    |                  | SLA6868MZ                         |                                                                 | 2.5        | Α    |
| Output Current, Continuous                   | l lo             | SLA6870MZ                         |                                                                 | 3          | A    |
| Outrast Ourrest Data at                      | I <sub>OP</sub>  | SLA6868MZ                         |                                                                 | 3.75       | Α    |
| Output Current, Pulsed                       |                  | SLA6870MZ                         | PW ≤ 100 $\mu$ s, duty cycle = 1%                               | 4.5        | Α    |
| Input Voltage                                | V <sub>IN</sub>  | HINx and LINx pins                |                                                                 | -0.5 to 7  | V    |
| Pull-up Voltage for Shutdown Pins            | V <sub>SDX</sub> | SDx pins                          |                                                                 | 7          | V    |
| Pull-up Voltage for Overcurrent Limiting Pin | V <sub>OCL</sub> |                                   |                                                                 | 7          | V    |
| Allowable Power Dissipation                  | PD               | T <sub>C</sub> = 25°C             |                                                                 | 32.9       | W    |
| Thermal Resistance (Junction to Case)        | R <sub>θJC</sub> | All elements ope                  | erating                                                         | 3.8        | °C/W |
| Case Operating Temperature                   | T <sub>COP</sub> |                                   |                                                                 | -20 to 100 | °C   |
| Junction Temperature (MOSFET)                | TJ               |                                   |                                                                 | 150        | °C   |
| Storage Temperature                          | T <sub>stg</sub> |                                   |                                                                 | -40 to 150 | °C   |

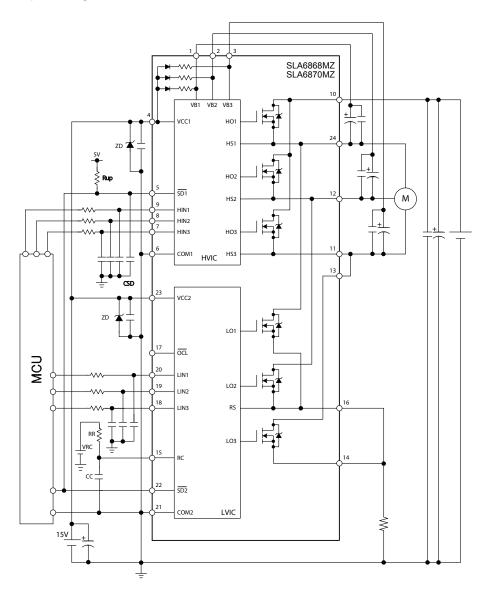
All performance characteristics given are typical values for circuit or system baseline design only and are at the nominal operating voltage and an ambient temperature,  $T_A$ , of 25°C, unless otherwise stated.

#### **Recommended Operating Conditions**

| Characteristic                    | Symbol                              | Remarks                                | Min. | Тур. | Max. | Units |
|-----------------------------------|-------------------------------------|----------------------------------------|------|------|------|-------|
| Main Supply Voltage               | V <sub>BB</sub>                     | Between VBB and LS                     | _    | _    | 400  | V     |
| V <sub>BB</sub> Snubber Capacitor | C <sub>SB</sub>                     |                                        | 0.01 | -    | 0.1  | μF    |
| Logic Supply Voltage              | V <sub>CC</sub>                     | Between VCC and COM                    | 13.5 | 15   | 16.5 | V     |
| Zener Voltage for VCCx Pins       | Vz                                  | Between VCC and COM                    | 18   | -    | 20   | V     |
| Pull-up Voltage                   | V <sub>SDx</sub> , V <sub>OCL</sub> |                                        | 4.5  | 5    | 5.5  | V     |
| Pull-up Resistor SDx Pins         | R <sub>UP2</sub>                    |                                        | 3.3  | _    | 10   | kΩ    |
| Pull-up Resistor OCL Pin          | R <sub>UP1</sub>                    |                                        | 1    | _    | 10   | kΩ    |
| Pull-up Resistor RC Pin           | R <sub>R</sub>                      |                                        | 33   | _    | 390  | kΩ    |
| Capacitor SDx Pins                | C <sub>SDX</sub>                    |                                        | 1    | _    | 10   | nF    |
| Capacitor RC Pin                  | C <sub>C</sub>                      |                                        | 1    | _    | 4.7  | nF    |
| Dead Time                         | t <sub>dead</sub>                   | $T_J = -20^{\circ}C$ to $150^{\circ}C$ | 1.5  | _    | -    | μs    |
| Minimum lung of Data a Mitchie    | I <sub>INMIN(on)</sub>              | $T_J = -20^{\circ}C$ to $150^{\circ}C$ | 0.5  | _    | -    | μs    |
| Minimum Input Pulse Width         | I <sub>INMIN(off)</sub>             | $T_J = -20^{\circ}C$ to $150^{\circ}C$ | 0.5  | _    | -    | μs    |
| Switching Frequency               | f <sub>PWM</sub>                    |                                        | -    | -    | 20   | kHz   |

#### **Typical Application Diagram**




NOTE:

• The external electrolytic capacitors should be placed as close to the IC as possible, in order to avoid malfunctions from external noise interference. Put a ceramic capacitor in parallel with the electrolytic capacitor if further reduction of noise susceptibility is necessary.

## SLA6868MZ and SLA6870MZ

#### **Typical Application Diagram**

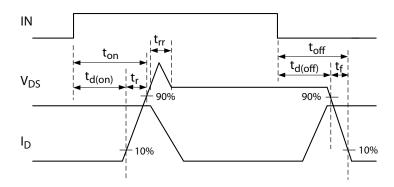
Shows configuration without current limiter function: SD1 and SD2 pins tied together



#### NOTE:

The external electrolytic capacitors should be placed as close to the IC as possible, in order to avoid malfunctions from external noise interference. Put a ceramic capacitor in parallel with the electrolytic capacitor if further reduction of noise susceptibility is necessary.

| Characteristics                                                    | Symbol                                     |                                                                          | Conditions                                                            | Min    | Тур  | Max    | Units |
|--------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|--------|------|--------|-------|
|                                                                    |                                            | SLA6868MZ                                                                | -                                                                     | 4.2    | 7    | mA     |       |
| Logic Supply Current                                               | I <sub>CC</sub>                            | SLA6870MZ                                                                | $V_{CC}$ = 15 V, $T_{C}$ = -20°C to 125°C                             |        | 2.7  | 5.0    | mA    |
| Bootstrap Supply Current                                           | I <sub>BX</sub>                            | V <sub>BX</sub> = 15 V, V <sub>HIN</sub>                                 | = 5 V                                                                 | -      | 135  | 380    | μA    |
|                                                                    | VIH                                        | V <sub>CC</sub> = 15 V                                                   |                                                                       | -      | 2.9  | 3.4    | V     |
| Input Voltage                                                      | VIL                                        | V <sub>CC</sub> = 15 V                                                   | V <sub>CC</sub> = 15 V                                                |        | 2.1  | _      | V     |
| Input Voltage Hysteresis                                           | V <sub>lhys</sub>                          | V <sub>CC</sub> = 15 V                                                   |                                                                       | -      | 0.8  | -      | V     |
| Input Current                                                      | I <sub>IN</sub>                            | V <sub>IN</sub> = 5 V                                                    |                                                                       | -      | 230  | 500    | μA    |
|                                                                    | V <sub>UVHL</sub>                          | Llink side katur                                                         |                                                                       | 9.0    | 10.0 | 11.0   | V     |
|                                                                    | V <sub>UVHH</sub>                          | High side, betwe                                                         | en VBx and U, V, or W                                                 | 9.5    | 10.5 | 11.5   | V     |
|                                                                    | V <sub>UVHhys</sub>                        | High side, hyster                                                        | resis                                                                 | -      | 0.5  | -      | V     |
| Undervoltage Lock Out                                              | V <sub>UVLL</sub>                          | Low side betwee                                                          | on VCC2 and COM2                                                      | 10.0   | 11.0 | 12.0   | V     |
|                                                                    | V <sub>UVLH</sub>                          | Low side, betwee                                                         | Low side, between VCC2 and COM2                                       |        | 11.5 | 12.5   | V     |
|                                                                    | V <sub>UVLhys</sub>                        | Low side, hyster                                                         | esis                                                                  | -      | 0.5  | _      | V     |
| SDx and OCL Output Voltage                                         | V <sub>SDX(on)</sub> ,<br>V <sub>OCL</sub> | $V_{SDX} = V_{OCL} = 5 \text{ V}, \text{ R}_{UPX} = 3.3 \text{ k}\Omega$ |                                                                       | -      | _    | 0.6    | V     |
| Overtemperature Detection Threshold<br>Temperature (Activation and | T <sub>DH</sub>                            |                                                                          | $V_{CC}$ = 15 V, high-side and low side                               |        | 135  | 150    | °C    |
|                                                                    | T <sub>DL</sub>                            | V <sub>CC</sub> = 15 V, high                                             |                                                                       |        | 115  | 130    | °C    |
| Deactivation)                                                      | T <sub>Dhys</sub>                          |                                                                          |                                                                       | -      | 20   | -      | °C    |
| Overcurrent Protection Trip Voltage                                | V <sub>TRIP</sub>                          | V <sub>CC</sub> = 15 V                                                   |                                                                       | 0.9    | 1.0  | 1.1    | V     |
| Overcurrent Limit Reference Voltage                                | V <sub>LIM</sub>                           | V <sub>CC</sub> = 15 V                                                   |                                                                       | 0.5035 | 0.53 | 0.5565 | V     |
| Overcurrent Protection Hold Time                                   | tp                                         | $V_{\rm RC}$ = 5 V, R <sub>R</sub> = 3                                   | 360 kΩ, C <sub>C</sub> = 0.0047 μF                                    | -      | 2.0  | -      | ms    |
| Blanking Time                                                      | t <sub>blank</sub>                         | V <sub>CC</sub> = 15 V                                                   |                                                                       | 1.4    | 2.0  | 2.6    | μs    |
| Bootstrap Diode Leakage Current                                    | I <sub>LBD</sub>                           | V <sub>R</sub> = 250 V                                                   |                                                                       | -      | -    | 10     | μA    |
| Bootstrap Diode Forward Voltage                                    | V                                          | SLA6868MZ                                                                | = 0.05 A                                                              | -      | 1.1  | 1.3    | V     |
| Boolstrap Diode Forward Voltage                                    | V <sub>FBD</sub>                           | SLA6870MZ                                                                | - 0.09 A                                                              | -      | 0.8  | 1.3    | V     |
| Bootstrap Diode Recovery Time                                      | t <sub>rrb</sub>                           | I <sub>F</sub> / I <sub>RP</sub> = 100 mA                                | / 100 mA                                                              | -      | 70   | -      | ns    |
| Bootstrap Diode Series Resistor                                    | R <sub>BD</sub>                            |                                                                          |                                                                       | 168    | 210  | 252    | Ω     |
| MOSFET Breakdown Voltage                                           | V <sub>DSS</sub>                           | $V_{\rm CC}$ = 15 V, I <sub>D</sub> = 7                                  | 100 µA, V <sub>IN</sub> = 0 V                                         | 500    | -    | -      | V     |
| MOSFET Leakage Current                                             | I <sub>DSS</sub>                           | V <sub>CC</sub> = 15 V, V <sub>DS</sub> =                                | = 500 V, V <sub>IN</sub> = 0 V                                        | -      | _    | 100    | μA    |
| MOSEET On State Desistance                                         | Р                                          | SLA6868MZ V                                                              | <sub>CC</sub> = 15 V, I <sub>D</sub> = 1.5 A, V <sub>IN</sub> = 5 V   | -      | 2.0  | 2.4    | Ω     |
| MOSFET On State Resistance                                         | R <sub>DS(on)</sub>                        | SLA6870MZ V                                                              | <sub>CC</sub> = 15 V, I <sub>D</sub> = 1.25 A, V <sub>IN</sub> = 5 V  | -      | 1.4  | 1.7    | Ω     |
| MOSEET Diado Enguard Valtaga                                       |                                            | SLA6868MZ V                                                              | <sub>CC</sub> = 15 V, I <sub>SD</sub> = 1.5 A, V <sub>IN</sub> = 0 V  | -      | 1.1  | 1.5    | V     |
| MOSFET Diode Forward Voltage                                       | V <sub>SDF</sub>                           | SLA6870MZ V                                                              | <sub>CC</sub> = 15 V, I <sub>SD</sub> = 1.25 A, V <sub>IN</sub> = 0 V | -      | 1.0  | 1.5    | V     |


#### ELECTRICAL CHARACTERISTICS, valid at $T_A=25^{\circ}C$ , unless otherwise noted

#### SLA6868MZ SWITCHING CHARACTERISTICS, valid at $T_{A}{=}25^{\circ}C,$ unless otherwise noted

| Characteristics           | Symbol               | Conditions                                                               | Min | Тур | Мах | Units |
|---------------------------|----------------------|--------------------------------------------------------------------------|-----|-----|-----|-------|
|                           | t <sub>dH(on)</sub>  | $V_{BB}$ = 300 V, $V_{CC}$ = 15 V, $I_{D}$ = 2.5 A, 0 V ≤ $V_{IN}$ ≤ 5 V | -   | 790 | -   | ns    |
|                           | t <sub>rH</sub>      |                                                                          | -   | 60  | -   | ns    |
| Switching Time, High Side | t <sub>rrH</sub>     |                                                                          | -   | 115 | -   | ns    |
|                           | t <sub>dH(off)</sub> |                                                                          | -   | 725 | -   | ns    |
|                           | t <sub>fH</sub>      |                                                                          | -   | 20  | -   | ns    |
|                           | t <sub>dL(on)</sub>  | $V_{BB}$ = 300 V, $V_{CC}$ = 15 V, $I_D$ = 2.5 A, 0 V ≤ $V_{IN}$ ≤ 5 V   | -   | 680 | -   | ns    |
|                           | t <sub>rL</sub>      |                                                                          | -   | 70  | _   | ns    |
| Switching Time, Low Side  | t <sub>rrL</sub>     |                                                                          | -   | 120 | -   | ns    |
|                           | t <sub>dL(off)</sub> |                                                                          | -   | 605 | -   | ns    |
|                           | t <sub>fL</sub>      |                                                                          | -   | 20  | -   | ns    |

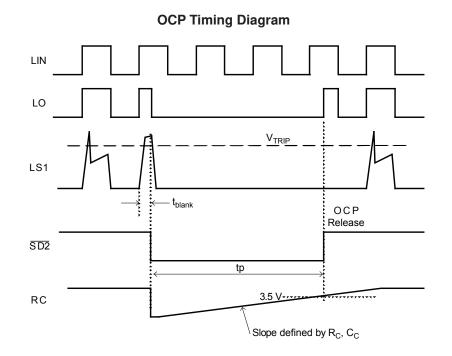
#### SLA6870MZ SWITCHING CHARACTERISTICS, valid at T<sub>A</sub>=25°C, unless otherwise noted

| Characteristics           | Symbol               | Conditions                                                                                       | Min | Тур | Max | Units |
|---------------------------|----------------------|--------------------------------------------------------------------------------------------------|-----|-----|-----|-------|
|                           | t <sub>dH(on)</sub>  |                                                                                                  | -   | 755 | -   | ns    |
|                           | t <sub>rH</sub>      |                                                                                                  | -   | 65  | -   | ns    |
| Switching Time, High Side | t <sub>rrH</sub>     | $V_{BB}$ = 300 V, $V_{CC}$ = 15 V, $I_D$ = 2.5 A, 0 V ≤ $V_{IN}$ ≤ 5 V,<br>inductive load        | _   | 100 | _   | ns    |
|                           | t <sub>dH(off)</sub> |                                                                                                  | _   | 680 | _   | ns    |
|                           | t <sub>fH</sub>      |                                                                                                  | -   | 15  | -   | ns    |
|                           | t <sub>dL(on)</sub>  | $V_{BB}$ = 300 V, $V_{CC}$ = 15 V, $I_{D}$ = 2.5 A, 0 V $\leq$ V_{IN} $\leq$ 5 V, inductive load | -   | 645 | -   | ns    |
|                           | t <sub>rL</sub>      |                                                                                                  | -   | 70  | _   | ns    |
| Switching Time, Low Side  | t <sub>rrL</sub>     |                                                                                                  | -   | 105 | -   | ns    |
|                           | t <sub>dL(off)</sub> |                                                                                                  | -   | 560 | -   | ns    |
|                           | t <sub>fL</sub>      |                                                                                                  | -   | 20  | -   | ns    |

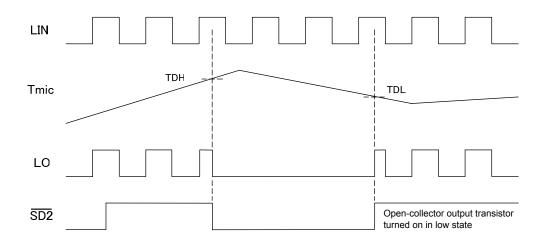


Switching Characteristics Definitions

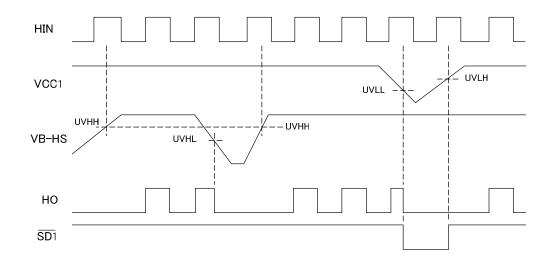
| Mode                    | Hin | Lin | H-side MOSFET | L-side MOSFET |
|-------------------------|-----|-----|---------------|---------------|
|                         | L   | L   | Off           | Off           |
| Normal                  | Н   | L   | On            | Off           |
| Normai                  | L   | Н   | Off           | On            |
|                         | Н   | Н   | On            | On            |
|                         | L   | L   | Off           | Off           |
| TSD -                   | Н   | L   | On            | Off           |
| 150                     | L   | Н   | Off           | Off           |
|                         | Н   | Н   | On            | Off           |
|                         | L   | L   | Off           | Off           |
| OCP                     | Н   | L   | On            | Off           |
|                         | L   | Н   | Off           | Off           |
|                         | Н   | Н   | On            | Off           |
|                         | L   | L   | Off           | Off           |
| OCL (= L) <sup>1</sup>  | Н   | L   | Off           | Off           |
|                         | L   | н   | Off           | On            |
|                         | Н   | н   | Off           | On            |
|                         | L   | L   | Off           | Off           |
| UVLO (VCC) <sup>2</sup> | Н   | L   | Off           | Off           |
|                         | L   | Н   | Off           | Off           |
|                         | Н   | Н   | Off           | Off           |
|                         | L   | L   | Off           | Off           |
|                         | Н   | L   | Off           | Off           |
| UVLO (VB) <sup>3</sup>  | L   | Н   | Off           | On            |
|                         | Н   | Н   | Off           | On            |
|                         | L   | L   | Off           | Off           |
| <u>SD2</u> (= L)        | Н   | L   | On            | Off           |
| SD2 (= L)               | L   | н   | Off           | Off           |
|                         | Н   | Н   | On            | Off           |


#### **Truth Table**

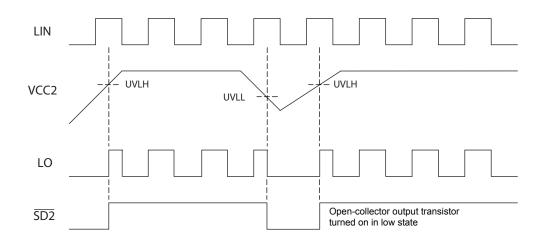
<sup>1</sup>The OCL feature is enabled when the OCL and SD1 pins are tied together externally. If these pins are not tied when an OCL condition occurs, device operation continues in Normal mode.

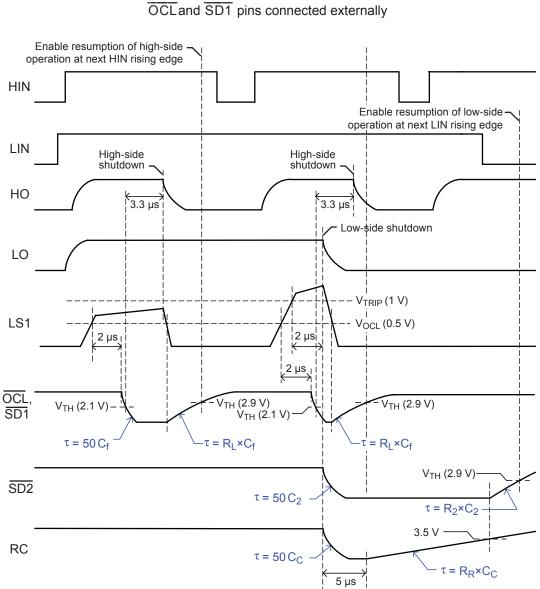

<sup>2</sup>Returning to the Normal mode of operation from a  $V_{CC}$  UVLO condition, a high-side MOSFET resumes switching on the rising edge of an HINx input. On the other hand, a low-side MOSFET resumes switching on the first logic high of a LINx input after release of the UVLO condition.

 $^{3}$ Returning to the Normal mode of operation from a V<sub>B</sub> UVLO condition, a high-side MOSFET resumes switching on the rising edge of an HINx input.


Note: To prevent a shoot-through condition, the external microcontroller should not drive HINx = LINx = H at the same time.



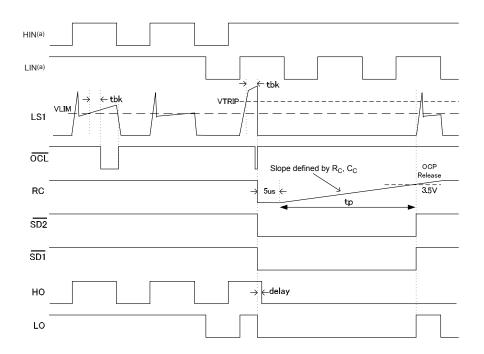

Low-Side TSD Timing Diagram




#### High-Side UVLO Timing Diagram

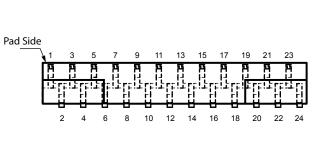


#### Low-Side UVLO Timing Diagram

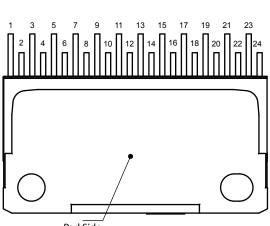





## OCL Timing Diagram


#### Shut Down Timing Diagram

SD1 and SD2 pins connected externally; current-limiter function not in use




(a) Each HINx or LINx pin drives a independent side of a phase, that is, the high-side and the low-side swtiching devices of a U, V, or W motor coil phase are each driven separately, by the corresponding dedicated HINx or LINx input

#### **Pin-out Diagram**

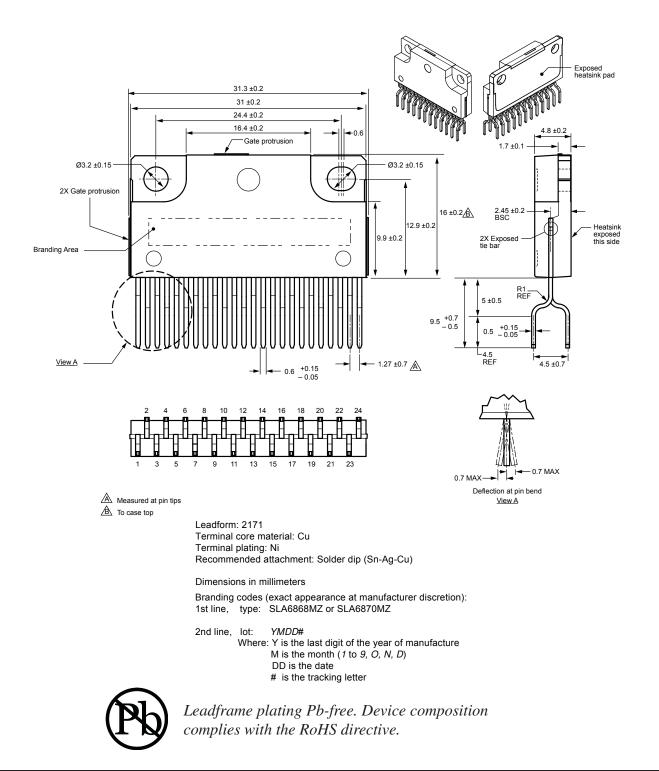


Leadform 2171



Leadform 2175

Pad Side


| Number | Name | Function                                                                                |
|--------|------|-----------------------------------------------------------------------------------------|
| 1      | VB1  | High side bootstrap terminal (U phase)                                                  |
| 2      | VB2  | High side bootstrap terminal (V phase)                                                  |
| 3      | VB3  | High side bootstrap terminal (W phase)                                                  |
| 4      | VCC1 | High side logic supply voltage                                                          |
| 5      | SD1  | High side shutdown input and UVLO fault signal output                                   |
| 6      | COM1 | High side logic GND terminal                                                            |
| 7      | HIN3 | High side input terminal (W phase)                                                      |
| 8      | HIN2 | High side input terminal (V phase)                                                      |
| 9      | HIN1 | High side input terminal (U phase)                                                      |
| 10     | VBB  | Main supply voltage                                                                     |
| 11     | W1   | Output of W phase (connect to W2 externally)                                            |
| 12     | V    | Output of V phase                                                                       |
| 13     | W2   | Output of W phase (connect to W1 externally)                                            |
| 14     | LS2  | Low side source terminal (connect to LS1 externally)                                    |
| 15     | RC   | Overcurrent protection hold time adjustment input terminal                              |
| 16     | LS1  | Low side source terminal (connect to LS2 externally)                                    |
| 17     | OCL  | Output for overcurrent limiting                                                         |
| 18     | LIN3 | Low side input terminal (W phase)                                                       |
| 19     | LIN2 | Low side input terminal (V phase)                                                       |
| 20     | LIN1 | Low side input terminal (U phase)                                                       |
| 21     | COM2 | Low side GND terminal                                                                   |
| 22     | SD2  | Low side shutdown input and overtemperature, overcurrent, and UVLO fault signals output |
| 23     | VCC2 | Low side logic supply voltage                                                           |
| 24     | U    | Output of U phase                                                                       |

#### **Terminal List Table**

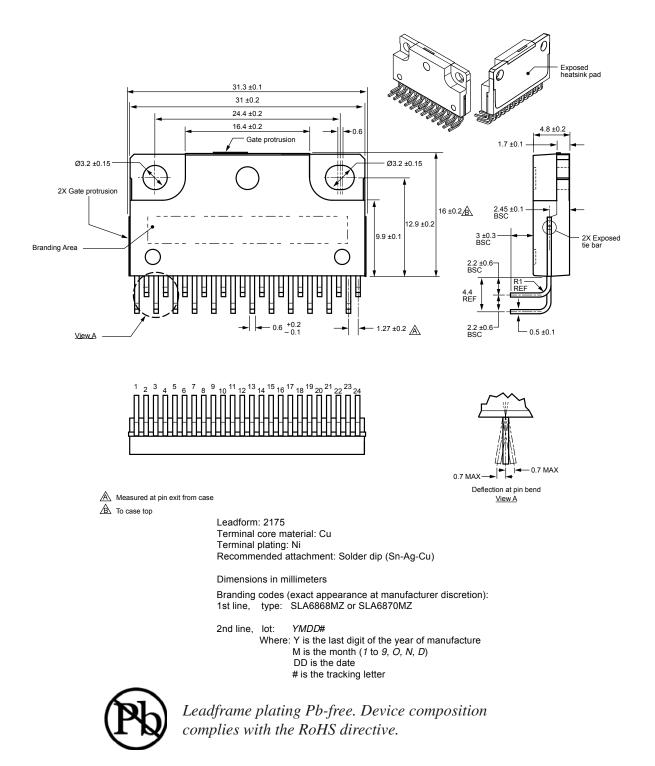
### Package Outline Drawing

Leadform 2171

Dual rows, 24 alternating pins; vertical case mounting; pin #1 on pad side



SANKEN ELECTRIC CO., LTD.


## SLA6868MZ and SLA6870MZ

### High Voltage 3-Phase Motor Drivers

### Package Outline Drawing

Leadform 2175

Dual rows, 24 alternating pins; pins bent 90° for horizontal case mounting; pin #1 in outer row



SANKEN ELECTRIC CO., LTD.

## SLA6868MZ and SLA6870MZ

Because reliability can be affected adversely by improper storage environments and handling methods, please observe the following cautions.

#### **Cautions for Storage**

- Ensure that storage conditions comply with the standard temperature (5°C to 35°C) and the standard relative humidity (around 40% to 75%); avoid storage locations that experience extreme changes in temperature or humidity.
- Avoid locations where dust or harmful gases are present and avoid direct sunlight.
- Reinspect for rust on leads and solderability of the products that have been stored for a long time.

#### **Cautions for Testing and Handling**

When tests are carried out during inspection testing and other standard test periods, protect the products from power surges from the testing device, shorts between the product pins, and wrong connections. Ensure all test parameters are within the ratings specified by Sanken for the products.

#### Remarks About Using Silicone Grease with a Heatsink

- When silicone grease is used in mounting the products on a heatsink, it shall be applied evenly and thinly. If more silicone grease than required is applied, it may produce excess stress.
- Volatile-type silicone greases may crack after long periods of time, resulting in reduced heat radiation effect. Silicone greases with low consistency (hard grease) may cause cracks in the mold resin when screwing the products to a heatsink.

Our recommended silicone greases for heat radiation purposes, which will not cause any adverse effect on the product life, are indicated below:

| Туре   | Suppliers                            |
|--------|--------------------------------------|
| G746   | Shin-Etsu Chemical Co., Ltd.         |
| YG6260 | Momentive Performance Materials Inc. |
| SC102  | Dow Corning Toray Co., Ltd.          |

#### **Cautions for Mounting to a Heatsink**

• When the flatness around the screw hole is insufficient, such as when mounting the products to a heatsink that has an extruded (burred) screw hole, the products can be damaged, even with a lower than recommended screw torque. For mounting the products, the mounting surface flatness should be 0.05 mm or less.

- Please select suitable screws for the product shape. Do not use a flat-head machine screw because of the stress to the products. Self-tapping screws are not recommended. When using self-tapping screws, the screw may enter the hole diagonally, not vertically, depending on the conditions of hole before threading or the work situation. That may stress the products and may cause failures.
- Recommended screw torque: 0.588 to 0.785 Nom (6 to 8 kgfocm).
- For tightening screws, if a tightening tool (such as a driver) hits the products, the package may crack, and internal stress fractures may occur, which shorten the lifetime of the electrical elements and can cause catastrophic failure. Tightening with an air driver makes a substantial impact. In addition, a screw torque higher than the set torque can be applied and the package may be damaged. Therefore, an electric driver is recommended.

When the package is tightened at two or more places, first pre-tighten with a lower torque at all places, then tighten with the specified torque. When using a power driver, torque control is mandatory.

#### Soldering

- When soldering the products, please be sure to minimize the working time, within the following limits: 260±5°C 10±1 s (Flow, 2 times) 380±10°C 5±0.5 s (Soldering iron, 1 time)
- Soldering should be at a distance of at least 1.5 mm from the body of the products.

#### **Electrostatic Discharge**

- When handling the products, the operator must be grounded. Grounded wrist straps worn should have at least 1 M $\Omega$  of resistance from the operator to ground to prevent shock hazard, and it should be placed near the operator.
- Workbenches where the products are handled should be grounded and be provided with conductive table and floor mats.
- When using measuring equipment such as a curve tracer, the equipment should be grounded.
- When soldering the products, the head of soldering irons or the solder bath must be grounded in order to prevent leak voltages generated by them from being applied to the products.
- The products should always be stored and transported in Sanken shipping containers or conductive containers, or be wrapped in aluminum foil.

- The contents in this document are subject to changes, for improvement and other purposes, without notice. Make sure that this is the latest revision of the document before use.
- Application and operation examples described in this document are quoted for the sole purpose of reference for the use of the products herein and Sanken can assume no responsibility for any infringement of industrial property rights, intellectual property rights or any other rights of Sanken or any third party which may result from its use.
- Although Sanken undertakes to enhance the quality and reliability of its products, the occurrence of failure and defect of semiconductor products at a certain rate is inevitable. Users of Sanken products are requested to take, at their own risk, preventative measures including safety design of the equipment or systems against any possible injury, death, fires or damages to the society due to device failure or malfunction.
- Sanken products listed in this document are designed and intended for the use as components in general purpose electronic equipment or apparatus (home appliances, office equipment, telecommunication equipment, measuring equipment, etc.).

When considering the use of Sanken products in the applications where higher reliability is required (transportation equipment and its control systems, traffic signal control systems or equipment, fire/crime alarm systems, various safety devices, etc.), and whenever long life expectancy is required even in general purpose electronic equipment or apparatus, please contact your nearest Sanken sales representative to discuss, prior to the use of the products herein.

The use of Sanken products without the written consent of Sanken in the applications where extremely high reliability is required (aerospace equipment, nuclear power control systems, life support systems, etc.) is strictly prohibited.

• In the case that you use Sanken products or design your products by using Sanken products, the reliability largely depends on the degree of derating to be made to the rated values. Derating may be interpreted as a case that an operation range is set by derating the load from each rated value or surge voltage or noise is considered for derating in order to assure or improve the reliability. In general, derating factors include electric stresses such as electric voltage, electric current, electric power etc., environmental stresses such as ambient temperature, humidity etc. and thermal stress caused due to self-heating of semiconductor products. For these stresses, instantaneous values, maximum values and minimum values must be taken into consideration.

In addition, it should be noted that since power devices or IC's including power devices have large self-heating value, the degree of derating of junction temperature affects the reliability significantly.

- When using the products specified herein by either (i) combining other products or materials therewith or (ii) physically, chemically or otherwise processing or treating the products, please duly consider all possible risks that may result from all such uses in advance and proceed therewith at your own responsibility.
- Anti radioactive ray design is not considered for the products listed herein.
- Sanken assumes no responsibility for any troubles, such as dropping products caused during transportation out of Sanken's distribution network.
- The contents in this document must not be transcribed or copied without Sanken's written consent.