

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

User Manual EZR32WG 169MHz Wireless Starter Kit

The WSTK6224 is an excellent starting point to get familiar with the EZR32 Wonder Gecko Wireless Microcontrollers.

The Wireless Starter Kit Mainboard contains sensors and peripherals demonstrating some of the Wireless MCU's many capabilities. The kit provides all necessary tools for developing a Silicon Labs wireless application.

KIT FEATURES

- · Ethernet and USB connectivity
- Advanced Energy Monitoring
- Packet Trace Interface support
- · SEGGER J-Link OB debugger
- Debug Multiplexer supporting external hardware as well as radio board
- Silicon Labs' Si/021 Relative Humidity and Temperature sensor
- Ultra Low power 128x128 pixel Memory LCD
- · LEDs / Pushbuttons / Reset button
- 20pin 2.54mm header for expansion boards
- Breakout pads for direct access to all radio I/O pins
- Power sources including USB and CR2032
 Solid cell holder.

ORDERING INFO

SLWSTK6224A

RADIO BOARD FEATURES

- EZR32WG330F256R63G MCU with 256 kB Flash and 32 kB RAM.
- · SMA antenna connector
- USB Micro-B connector
- Backup domain capcitor

SOFTWARE SUPPORT

- · Simplicity Studio
- · Simplicity Profiler
- Simplicity Network Analyzer
- · Extensive example set for radio
- · Kit Board Support Package

Table of Contents

1.	Introduction	. 1
	1.1 Description	. 1
	1.2 Kit Content	. 1
	1.3 Getting Started	. 1
2.	Kit Block Diagram	. 2
3.	Kit Hardware Layout	. 3
4.	Power Supply and Reset	. 4
	4.1 MCU Power Selection	. 4
	4.2 Board Controller Power	. 4
	4.3 Backup Power Domain	. 4
	4.4 MCU Reset	. 5
	4.5 Board Controller Reset	. 5
5.	Peripherals	. 6
	5.1 Push Buttons and LEDs	. 6
	5.2 Memory LCD-TFT Display.	. 7
	5.3 Backup Domain Capacitor.	. 7
	5.4 USB Micro-B Connector	. 8
	5.5 Si7021 Relative Humidity and Temperature Sensor	. 9
6.	Advanced Energy Monitor	. 10
	6.1 Introduction	.10
	6.2 Advanced Energy Monitor - Theory of operation	.10
	6.3 AEM accuracy and performance.	.11
	6.4 Usage	.11
7.	Board Controller	. 12
	7.1 VCOM	.12
8.	Board Support Package	. 13
	8.1 Application Programming Interface	
	8.2 Example Applications	
	8.3 How to include in your own applications	
9.	Connectors	14
	9.1 Radio Board breakout pads	
	9.2 Debug Connector (DBG)	
	9.3 Simplicity Connector.	
	9.4 Expansion header	
10	. Integrated Development Environments	. 20

	10.1 IAR Embedded Workbench for ARM	.20
	10.2 Atollic TrueSTUDIO for ARM	.21
	10.3 Rowley Associates - CrossWorks for ARM	.21
	10.4 Keil - MDK-ARM	.21
11.	Kit Manager and Upgrades	22
	11.1 Kit Manager Operation	.22
	11.2 Firmware Upgrades	.22
12.	Schematics, Assembly Drawings and BOM	.23
13.	Kit Revision History and Errata	. 24
	13.1 Revision History	.24
	13.2 Errata	.24
14.	Document Revision History	. 25

1. Introduction

1.1 Description

The idea behind the WSTK6224 is to provide a complete development platform for Silicon Labs EZR32 Wonder Gecko Wireless Microcontrollers. The core of the WSTK6224 is the Wireless Starter Kit (WSTK) Mainboard (BRD4001) which feature an on-board J-Link debugger, an Advanced Energy Monitor for real-time current and voltage monitoring, a Virtual COM port interface, and access to the Packet Trace Interface (PTI). The WSTK Mainboard is paired with an EZR32 Wonder Gecko radio board that plugs directly into the mainboard. The radio board feature the EZR32 Wonder Gecko itself and the RF interface. All debug functionality, including AEM, VCOM and PTI, can also be used towards an external target instead of the included radio board. To further enhance the WSTK usability, the WSTK Mainboard contains sensors and peripherals demonstrating some of the Wireless MCU's many capabilities.

1.2 Kit Content

The following items are contained in the box:

- 2x BRD4001A Wireless Starter Kit Mainboards
- 2x BRD4504B EZR32 Wonder Gecko 169 MHz WSTK Radio Boards
- · 2x 169 MHz antennas with SMA connector
- 2x CR2032 Lithium batteries
- 2x USB Type A <-> USB Mini-B cables
- 2x USB Type A <-> USB Micro-B cables

Figure 1.1 WSTK6224 Kit Content on page 1 shows the kit content.

Figure 1.1. WSTK6224 Kit Content

1.3 Getting Started

Detailed instructions for how to get started with your new WSTK6224 can be found on the Silicon Labs Simplicity web pages:

http://www.silabs.com/simplicity

2. Kit Block Diagram

An overview of the EZR32WG 169MHz Wireless Starter Kit is shown in the figure below.

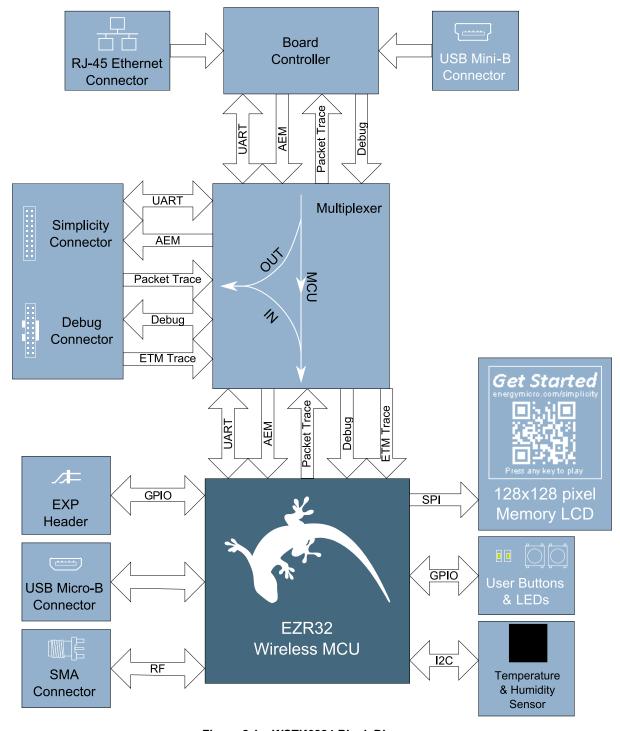


Figure 2.1. WSTK6224 Block Diagram

3. Kit Hardware Layout

The layout of the EZR32WG 169MHz Wireless Starter Kit is shown below.

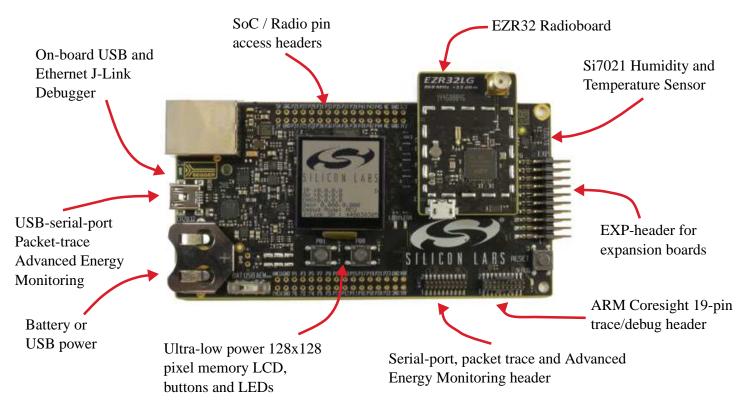


Figure 3.1. WSTK6224 hardware layout

The kit consists of two BRD4001 Wireless Starter Kit Mainboards paired with two BRD4504B plug-in radio boards with the following specifications:

- Wireless MCU: EZR32WG330F256R63G
- CPU core: ARM Cortex-M4Flash memory: 256 kB
- RAM: 32 kB
- · Sub-GHz transceiver integrated in the Wireless MCU: EZRadioPRO
- · Operation frequency: 169 MHz
- · Transmit power: 20 dBm
- · Single antenna connector both for transmit and receive
- Crystals for LFXO and HFXO: 32.768kHz and 48 MHz.
- Crystal for RF: 30 MHz
- · Backup Power Domain Capacitor
- Full speed USB 2.0 (12 Mbps)

4. Power Supply and Reset

4.1 MCU Power Selection

The EZR32 Wonder Gecko MCU on the WSTK6224 is designed to be powered by three different sources:

- · Through the on-board debugger.
- · Through the EZR32's own USB regulator.
- · By a 3V Battery.

Selecting the power source is done with the slide switch in the lower left corner of the board. Figure Figure 4.1 WSTK6224 Power Switch on page 4 shows how the different power sources can be selected with the slide switch.

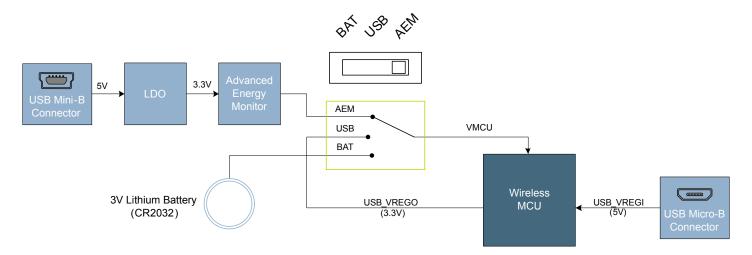


Figure 4.1. WSTK6224 Power Switch

With the switch in the *DBG* position, an on-board low noise LDO with a fixed output voltage of 3.3V is used to power the MCU. This LDO is again powered from the "J-Link" USB cable. The Advanced Energy Monitor is now also connected in series, allowing accurate high speed current measurements and energy debugging/profiling.

With the switch in the *USB* position, the integrated linear regulator in the EZR32 Wonder Gecko MCU is used to power the rest of the chip as well as the USB PHY. This allows a USB device application where the MCU acts as a bus powered device.

Finally, with the switch in the *BAT* position, a 20mm coin cell battery in the CR2032 socket can be used to power the device. **Note:**

The Advanced Energy Monitor can only measure the current consumption of the EZR32 when the power selection switch is in the *DBG* position.

4.2 Board Controller Power

The Board Controller is responsible for important features such as the debugger and the Advanced Energy Monitor, and is powered exclusively through the USB port in the top left corner of the board. This part of the kit resides on a separate power domain, so a different power source can be selected for the MCU while retaining debugging functionality. This power domain is also isolated to prevent current leakage from the MCU power domain when power to the Board Controller is removed.

4.3 Backup Power Domain

The kit contains a backup capacitor that can be used together with the EZR32 Wonder Gecko's backup power domain. In this case, all other power sources are removed from the kit, and only a small part of the EZR32 runs off the capacitor. It is also possible to enter backup mode while the Board Controller is powered by selecting either *BAT* or *USB* with no battery in the socket or USB cable in the connector.

4.4 MCU Reset

The EZR32 MCU can be reset by a few different sources:

- · A user pressing the RESET button.
- The on-board debugger pulling the #RESET pin low.
- An external debugger pulling the #RESET pin low.

4.5 Board Controller Reset

The Board Controller can be reset by removing and re-inserting the J-Link USB cable. Removing the Board Controller USB cable will not reset the EZR32, but whenever the Board Controller is powered up again, it will issue a RESET to the EZR32 through the on-board debugger.

5. Peripherals

The starter kit has a set of peripherals that showcase some of the features of the EZR32 Wonder Gecko Wireless Microcontroller.

Be aware that most EZR32 I/O routed to peripherals are also routed to the breakout pads. This must be taken into consideration when using the breakout pads for your application.

5.1 Push Buttons and LEDs

The kit has two user push buttons marked PB0 and PB1. They are connected to the EZR32, and are debounced by RC filters with a time constant of 1ms. The buttons are connected to pins PC8 and PC9.

In addition to the two push buttons, the kit also features two yellow LEDs marked *LED0* and *LED1*, that are controlled by GPIO pins on the EZR32. The LEDs are connected to pins PC10 and PC11 in an active-high configuration.

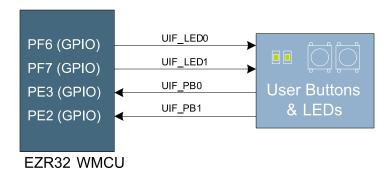


Figure 5.1. Buttons/LEDs

5.2 Memory LCD-TFT Display

A 1.28-inch SHARP Memory LCD-TFT has been added to the board to enable interactive applications to be developed. The display has a high resolution of 128 by 128 pixels, and consumes very little power. It is a reflective monochrome display, so each pixel can only be light or dark, and no backlight is needed in normal daylight conditions.

The display interface consists of an SPI-compatible serial interface and some extra control signals. Data is sent to the display one line (128 bits) at a time.

The Memory LCD-TFT display is shared with the kit Board Controller, allowing the Board Controller application to display useful information when the user application is not using the display. The user application always controls ownership of the display with EFM_DISP_SELECT (PA8):

- 0: The Board Controller has control of the display
- 1: The user application (EZR32) has control of the display

EFM_DISP_PWR (PA10) enables power to the display, and must be set high in order to use the display. Data is clocked in on EFM_DISP_MOSI (PD7) when EFM_DISP_CS (PE11) is high, and the clock is sent on EFM_DISP_SCLK (PC15). The maximum supported clock speed is 1.1 MHz.

EFM_DISP_COM (PE10) is the "COM Inversion" line. It must be pulsed periodically to prevent static build-up in the display itself. Please refer to the display application information for details on driving the display:

http://www.sharpmemorylcd.com/1-28-inch-memory-lcd.html

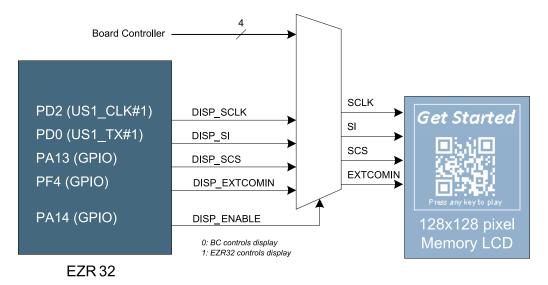


Figure 5.2. 128x128 pixel Memory LCD

5.3 Backup Domain Capacitor

A small super capacitor is provided to evaluate the EZR32 Wonder Gecko MCU's backup power domain. The capacitor has a nominal value of 33 mF, and is connected with a 100 ohm series resistor to the BU_VIN pin of the EZR32.

Because of the extremely low power consumption of the EZR32 in backup mode (400nA), the capacitor can power a clock application using the low frequency crystal oscillator (LFXO) for more than 8 hours.

The series resistor allows measuring of the current drawn from the capacitor into the EZR32 device, by simply using a multimeter to measure the voltage across it. Please refer to the schematic and assembly drawings to locate the series resistor.

5.4 USB Micro-B Connector

The BRD4504B WSTK Radio Board is equipped with a USB Micro-B connector that is connected directly to the EZR32. The Radio Board supports operation in USB Device mode only, even if the target radio also supports USB Host mode. Figure 5.3 Radio Board USB Connector on page 8 shows how the USB lines are connected to the EZR32.

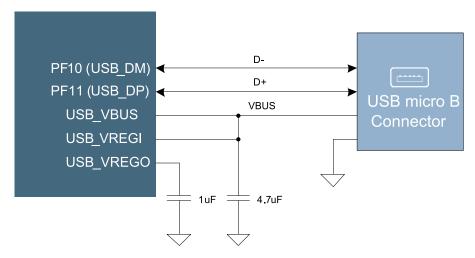
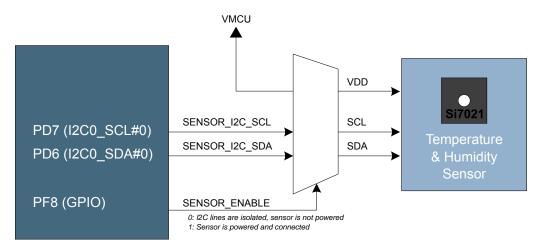


Figure 5.3. Radio Board USB Connector

5.5 Si7021 Relative Humidity and Temperature Sensor


The Si7021 I²C relative humidity and temperature sensor is a monolithic CMOS IC integrating humidity and temperature sensor elements, an analog-to-digital converter, signal processing, calibration data, and an I²C Interface. The patented use of industry-standard, low-K polymeric dielectrics for sensing humidity enables the construction of low-power, monolithic CMOS Sensor ICs with low drift and hysteresis, and excellent long term stability.

The humidity and temperature sensors are factory-calibrated and the calibration data is stored in the on-chip non-volatile memory. This ensures that the sensors are fully interchangeable, with no recalibration or software changes required.

The Si7021 is available in a 3x3 mm DFN package and is reflow solderable. It can be used as a hardware- and software-compatible drop-in upgrade for existing RH/ temperature sensors in 3x3 mm DFN-6 packages, featuring precision sensing over a wider range and lower power consumption. The optional factory-installed cover offers a low profile, convenient means of protecting the sensor during assembly (e.g., reflow soldering) and throughout the life of the product, excluding liquids (hydrophobic/oleophobic) and particulates.

The Si7021 offers an accurate, low-power, factory-calibrated digital solution ideal for measuring humidity, dew-point, and temperature, in applications ranging from HVAC/R and asset tracking to industrial and consumer platforms.

The I²C bus used for the Si7021 is shared with the Expansion Header. The temperature sensor is normally isolated from the I²C line. To use the sensor, PF8 must be set high. When enabled, the sensor's current consumption is included in the AEM measurements.

EZR32

Figure 5.4. Si7021 Relative Humidity and Temperature Sensor

6. Advanced Energy Monitor

6.1 Introduction

Any embedded developer seeking to make his embedded code spend as little energy as the underlying architecture supports, needs tools to easily and quickly discover inefficiencies in the running application.

This is what the Simplicity Energy Profiler is designed to do. It will in real-time graph and log current as a function of time while correlating this to the actual target application code running on the EZR32. There are multiple features in the profiler software that allows for easy analysis, such as markers and statistics on selected regions of the current graph or aggregate energy usage by different parts of the application.

6.2 Advanced Energy Monitor - Theory of operation

The AEM circuitry on the board is capable of measuring current signals in the range of 0.1uA to 150mA, which is close to 123dBs of dynamic range. It can do this while stil maintaining approximately 10kHz of current signal bandwidth. This is accomplished through a combination of a highly capable current sense amplifier, multiple gain stages and signal processing within the kit's board controller before the current sense signal is read by a host computer for display and/or storage.

The current sense amplifier measures the voltage drop over a small series resistor, and the gain stage further amplifies this voltage with two different gain settings to obtain two current ranges. The transition between these two ranges occurs around 250 µA.

The current signal is combined with the target MCU's Program Counter (PC) sampling by utilizing a feature of the ARM CoreSight debug architecture. The ITM (Instrumentation Trace Macrocell) block can be programmed to sample the MCU's PC at periodic intervals (50kHz) and output these over SWO pin ARM devices. When these two data streams are fused and correlated with the running application's memory map, an accurate statistical profile can be built over time, that shows the energy profile of the running application in real-time.

At kit power-up or on a power-cycle, and automatic AEM calibration is performed. This calibration compensates for any offset errors in the current sense amplifiers.

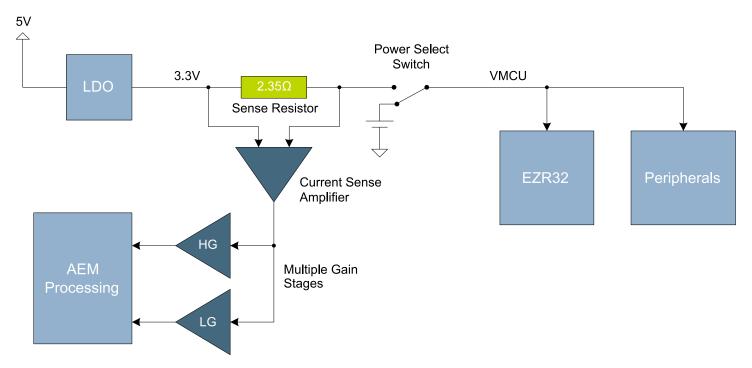


Figure 6.1. Advanced Energy Monitor

6.3 AEM accuracy and performance

The Advanced Energy Monitor is capable of measuring currents in the range of 0.1 μ A to95mA. For currents above 250 μ A, the AEM is accurate within 0.1 mA. When measuring currents below 250 μ A, the accuracy increases to 1 μ A. Even though the absolute accuracy is 1 μ A in the sub 250 μ A range, the AEM is able to detect changes in the current consumption as small as 100 nA.

The AEM current sampling rate is 10000 Hz.

Note: The AEM circuitry only works when the kit is powered and the power switch is in the AEM/DBG position.

6.4 Usage

The AEM (Advanced Energy Monitor) data is collected by the board controller and can be displayed by the Energy Profiler, available through Simplicity Studio. By using the Energy Profiler, current consumption and voltage can be measured and linked to the actual code running on the EZR32 in realtime.

7. Board Controller

The kit contains a board controller that is responsible for performing various board-level tasks, such as handling the debugger and the Advanced Energy Monitor. An interface is provided between the EZR32 and the board controller in the form of a UART connection. The connection is enabled by setting the VCOM_ENABLE (PA12) line high, and using the lines VCOM_TX (PB3) and VCOM_RX (PB4) for communication.

Specific library functions have been provided in the kit Board Support Package that support various requests to be made to the board controller, such as quering AEM voltage or current. To use these functions, the Board Support Package must be installed. See the to find out more.

Note:

The board controller is only available when USB power is connected.

7.1 VCOM

When enabling virtual serial communication (VCOM), the board controller makes communication possible on the following interfaces:

- · Virtual USB COM port using a CDC driver, provided that the kit is connected to a host computer.
- TCP/IP, by connecting to the Wireless Starter Kit on port 4901 using a telnet client.
- · Expansion header when enabled by the board controller.

The VCOM functionality can operate in two different modes:

- Transparent mode allows the target to communicate using a regular serial driver. The board controller forwards the raw byte stream to its interfaces.
- BSP-mode is initiated by a BSP call in the target application. This mode enables the target to use all BSP functionality, while having access to VCOM over USB and Ethernet.

8. Board Support Package

The Board Support Package (BSP) is a set of C source and header files that enables easy access to, and control over some board specific features. Using the BSP is not required, and the EZR32 is fully usable without the BSP.

The BSP uses EZR32 peripheral USART2, Location 1 (TX pin PB3, RX pin PB4) on baudrate 115200-8-N-1 to communicate with the board controller.

Note:

The BSP functionality is only available when the Starter Kit is USB-powered. Using these function calls with USB disconnected will give unpredictable results.

8.1 Application Programming Interface

To use the BSP, include the Starter Kit header file, like this:

```
#include "bsp.h"
```

All functions in the BSP are prefixed with BSP_. Some functions to control the user LEDs might look like:

```
int BSP_LedClear (int ledNo)
```

Turn off a single LED.

```
int BSP_LedSet (int ledNo)
```

Turn on a single LED.

8.2 Example Applications

Under the kits/EZR32WG_WSTK6224/examples folder in your base Simplicity installation directory, you will find example programs using the BSP, with corresponding project/Makefiles for supported IDEs.

The examples folder also contains examples showing how to use the different peripherals on the WSTK6224.

8.3 How to include in your own applications

The easiest way to include the BSP in your application is to create it using the Simplicity IDE.

Alternatively to base your work on the example application that uses the BSP. The following items are recommended for correct configuration:

- Make sure you define the correct part number (i.e. EZR32WG330F256R63G) as a preprocessor defined symbol
- 2. Make sure you define the correct part number (i.e. EZR32WG330F256R63G) for your project file
- 3. Add and include the EFM32 CMSIS-files (startup efm32.s, system efm32.c, core cm3.c) to your project
- 4. Add and include all BSP package .c-files, with the bsp-prefix to your project
- 5. Configure include paths to point at the CMSIS/CM3/CoreSupport and CMSIS/CM3/DeviceSupport/EnergyMicro/EFM32 directories
- 6. Configure include paths to point to the kits/EZR32WG WSTK6224/bsp directory

Make sure you call "BSP_Init()" early at startup, and you should be all set.

9. Connectors

This chapter gives you an overview of the Wireless Starter Kit Mainboard connectivity. The placement of the connectors can be seen in the figure below.

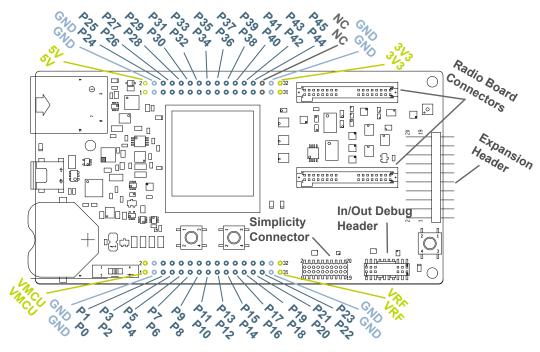


Figure 9.1. Connector layout

9.1 Radio Board breakout pads

Most of the EZR32's pins are routed out to "breakout pads" at the top and bottom edges of the Wireless Starter Kit Mainboard. A 2.54mm pitch pin header can be soldered on for easy access to the pins. The figure below shows you how the pins of the EZR32 Wonder Gecko Radio Board (BRD4504B (Rev. A00)) maps to the pins indicated on the breakout pads. To see the available functions on each pin we refer you to the EZR32WG330F256R63G reference manual available in Simplicity Studio.

```
J101
                                                                                        J102
                       VMCU o o VMCU
                                                                                      5V o o 5V
                         GND o o GND
                                                                                    GND oo GND
                     PC6 / P0 o o P1 / PD0 / DISP_SI
                                                                     BUTTON0 / PE3 / P24 o o P25 / PF10
                     PC7 / P2 o o P3 / PD1
                                                                              PF11 / P26 o o P27 / NC
                     PE0 / P4 o o P5 / PD2 / DISP_SCLK
                                                                                NC / P28 o o P29 / NC
                     PE1 / P6 o o P7 / PD3
                                                                    PTIO.DATA / PAO / P30 O O P31 / PA1 / PTIO.SYNC
                    PB11 / P8 o o P9 / PD4
                                                                          RF_GPIO2 / P32 o o P33 / RF_GPIO3
                    PF3 / P10 o o P11 / PD5
                                                               VCOM.RX_MISO / PB4 / P34 o o P35 / PB5 / VCOM.#CTS_SCLK
                    PD7 / P12 o o P13 / PD6
                                                              VCOM.#RTS_#CS / PB6 / P36 oo P37 / PF8 / SENSOR_ENABLE
        DISP_SCS / PA13 / P14 o o P15 / PA14 / DISP_ENABLE
                                                               VCOM.TX_MOSI / PB3 / P38 o o P39 / NC
                                                                               PF5 / P40 o o P41 / PD7
   VCOM_ENABLE / PA12 / P16 o o P17 / PF6 / LED0
                                                                               PD6 / P42 o o P43 / PD3
              LED1 / PF7 / P18 o o P19 / PF2 / DEBUG.TDO_SWO
DEBUG.TCK_SWCLK / PF0 / P20 o o P21 / PF1 / DEBUG.TMS_SWDIO
                                                                               PD4 / P44 o o P45 / PD5
   DISP_EXTCOMIN / PF4 / P22 O O P23 / PE2 / BUTTON1
                                                                                     NC o o NC
                                                                                    GND oo GND
                         GND o o GND
                         VRF o o VRF
                                                                                      3V3 O O 3V3
```

Figure 9.2. Radio board pin mapping on breakout pads.

9.2 Debug Connector (DBG)

This connector is used for Debug In and Debug Out (see chapter on Debugging). The pinout is described in Table 9.1 Debug Connector Pinout on page 15.

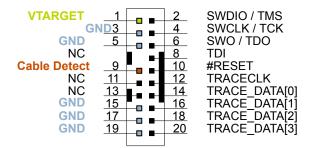


Figure 9.3. Debug Connector

Note that the pin-out matches the pin-out of an ARM Cortex Debug+ETM connector, but these are not fully compatible as pin 7 is physically removed from the Cortex Debug+ETM connector.

Table 9.1. Debug Connector Pinout

Pin number(s)	Function	Note
1	VTARGET	Target voltage on the debugged application.
2	TMS/SDWIO	JTAG TMS or Serial Wire Data I/O
4	TCK/SWCLK	JTAG TCK or Serial Wire clock
6	TDO/SWO	JTAG TDO or Serial Wire Output
8	TDI	JTAG data in
10	#RESET	Target MCU reset
12	TRACECLK	ETM Trace Clock
14	TRACEDATA[0]	ETM Trace Data 0
16	TRACEDATA[1]	ETM Trace Data 1
18	TRACEDATA[2]	ETM Trace Data 2
20	TRACEDATA[3]	ETM Trace Data 3
9	Cable detect	This signal must be pulled to ground by the external debugger or application for cable insertion detection.
11, 13	NC	Not connected
3, 5, 15, 17, 19	GND	

Note: The Wireless Starter Kit Mainboard does not have an onboard trace emulator. To have trace functionality an external debugger with such functionality can be connected with Debug In.

Note: Although the Debug Connector can support JTAG debugging of external targets, the EZR32-series of devices do not support JTAG.

9.3 Simplicity Connector

The Simpicity Connector featured on the Wireless Starter Kit Mainboard enables advanced debugging features such as the AEM, the Virtual COM port and the Packet Trace Interface to be used towards an external target. The pinout is illustrated in the figure below.

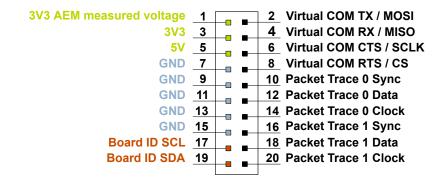


Figure 9.4. Simplicity Header pinout.

Current drawn from the VMCU voltage pin is included in the AEM measurements, while the 3V3 and 5V voltage pins are not. To monitor the current consumption of an external target with the AEM, unplug the WSTK Radio Board from the WSTK Mainboard to avoid that the Radio Board current consumption is added to the measurements.

Table 9.2. Simplicity Header pin descriptions

Pin number(s)	Function	Note
1	VMCU	3.3 V power rail, monitored by the AEM
3	3V3	3.3 V power rail
5	5V	5 V power rail
2	VCOM_TX_MOSI	Virtual COM Tx/MOSI
4	VCOM_RX_MISO	Virtual COM Rx/MISO
6	VCOM_CTS_#SCLK	Virtual COM CTS/SCLK
8	VCOM_#RTS_#CS	Virtual COM RTS/CS
10	PTI0_SYNC	Packet Trace 0 Sync
12	PTI0_DATA	Packet Trace 0 Data
14	PTI0_CLK	Packet Trace 0 Clock
16	PTI1_SYNC	Packet Trace 1 Sync
18	PTI1_DATA	Packet Trace 1 Data
20	PTI1_CLK	Packet Trace 1 Clock
17	EXT_ID_SCL	Board ID SCL
19	EXT_ID_SDA	Board ID SDA
7, 9, 11, 13, 15	GND	

9.4 Expansion header

On the right hand side of the board an angled 20 pin expansion header is provided to allow connection of peripherals or plugin boards. The connecter contains a number of I/O pins that can be used with most of the EZR32 Wonder Gecko's features. Additionally, the VMCU, 3V3 and 5V power rails are also exported.

Figure shows the pin assignment of the expansion header. With a few exceptions, most of the expansion header pins are the same as those on other EFM starter kits.

Some of the chip peripheral functions that are available on the Expansion Header are listed in table 7.3 Some peripheral functions available on Expansion Header on page 17.

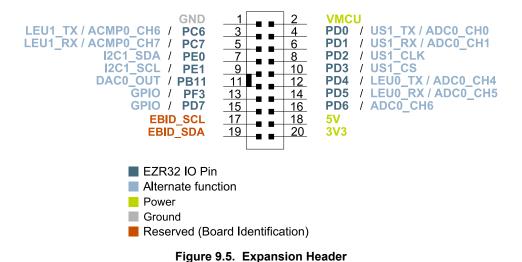


Table 9.3. Some peripheral functions available on Expansion Header

Peripheral	Peripheral pin	MCU Pin	EXP Header pin number
USART/SPI	USART1_TX	PD0	4
	USART1_RX	PD1	6
	USART1_CLK	PD2	8
	USART1_CS	PD3	10
I ² C	I2C1_SDA	PC4	7
	I2C1_SCL	PC5	9
Low Energy UART	LEUART0_TX	PD4	12
	LEUART0_RX	PD5	14
Analog to Digital Converter	ADC0_CH0	PD0	4
	ADC0_CH1	PD1	6
	ADC0_CH2	PD2	8
	ADC0_CH3	PD3	10
	ADC0_CH4	PD4	12
	ADC0_CH5	PD5	14
	ADC0_CH6	PD6	16
	ADC0_CH7	PD7	17

Peripheral	Peripheral pin	MCU Pin	EXP Header pin number
Digital to Analog Converter	DAC0_CH0	PB11	11
	DAC0_CH1	PB12	13
Analog Comparator	ACMP0_CH0	PC0	3
	ACMP0_CH3	PC3	5
	ACMP0_CH4	PC4	7
	ACMP0_CH5	PC5	9
	ACMP0_CH6	PC6	15
	ACMP0_O	PD6	16
	ACMP1_O	PD7	17
Operational Amplifier	OPAMP_N0	PC5	9
	OPAMP_P0	PC4	7
	OPAMP_OUT0	PB11	11
	OPAMP_N1	PD7	17
	OPAMP_P1	PD6	16
	OPAMP_OUT1	PB12	13
	OPAMP_N2	PD3	10
	OPAMP_P2	PD4	12
	OPAMP_OUT2	PD5, PD0	14, 4
Timer Compare/Capture	TIMER0_CC0	PD1	6
	TIMER0_CC1	PD2	8
	TIMER0_CC2	PD3	10
	TIMER1_CC0	PD6	16
	TIMER1_CC1	PD7	17
	TIMER1_CC2	PB11	11
w Energy Timer	LETIMO_OUTO	PD6, PB11, PC4	16, 11, 7
	LETIM0_OUT1	PD7, PB12, PC5	17, 13, 9
Low Energy Sensor Interface (LESENSE)	LES_CH0	PC0	3
	LES_CH3	PC3	5
	LES_CH4	PC4	7
	LES_CH5	PC5	9
	LES_CH6	PC6	15
	LES_ALTEX0	PD6	16
	LES_ALTEX1	PD7	17

Peripheral	Peripheral pin	MCU Pin	EXP Header pin number
Pulse Counter	PCNT0_S0IN	PD6	16
	PCNT0_S1IN	PD7	17
	PCNT1_S0IN	PC4	7
	PCNT1_S1IN	PC5	9
	PCNT2_S0IN	PD0	4
	PCNT2_S1IN	PD1	6
Peripheral Reflex System (PRS)	PRS_CH2	PC0	3

Note:

Please note that this table only sums up some of the alternate functions available on the expansion header. Consult the EZR32WG330F256R63G datasheet for a complete list of alternate functions.

10. Integrated Development Environments

Figure 10.1. Simplicity Studio

Simplicity Studio includes various examples in source form to use with the Starter Kit. To run these examples:

- 1. Provide power to the board by connecting the DBG USB connector to the PC using the provided USB cable.
- 2. Move the switch to the AEM position.
- 3. Click the [Refresh detected hardware] button and select the WSTK6224 kit under [Detected Hardware].
- Click the [Software Examples] tile under [Software and Kits].
- 5. In the wizard, select the WSTK6224 kit and click [Next].
- 6. Select the desired example or demo from the list and click [Next].
- 7. Click [Finish].
- 8. Click the [Debug] button in the IDE to build and download the code to the hardware.
- 9. Follow the instructions at the top of the main example file to set up the hardware as needed.
- 10. Click the [Resume] button to start running the example.

10.1 IAR Embedded Workbench for ARM

An evaluation version of IAR Embedded Workbench for ARM is included on a CD in the WSTK6224 package. Check the quick start guide for where to find updates, and IAR's own documentation on how to use it. You will find the IAR project file in the

iar

subfolder of each project

10.2 Atollic TrueSTUDIO for ARM

See the quick start guide for download details for Atollic TrueSTUDIO for ARM. You will find TrueStudio project files in the

atollic

subfolder of each project.

10.3 Rowley Associates - CrossWorks for ARM

See the quick start guide for download details for CrossWorks for ARM. You will find CrossWorks project files in the

rowley

subfolder of each project.

10.4 Keil - MDK-ARM

See the quick start guide for download details for evaluation versions of Keil MDK-ARM. The

arn

subfolder in each project contains project files for MDK-ARM. Please see the MDK-ARM documentation for usage details.

11. Kit Manager and Upgrades

The Kit Manager is a program that comes with Simplicity Studio. It can perform various kit and EZR32 specific tasks.

11.1 Kit Manager Operation

This utility gives the ability to program the EZR32, upgrade the kit, lock and unlock devices and more. Some of the features will only work with Energy Micro kits, while other will work with a generic J-Link debugger connected.

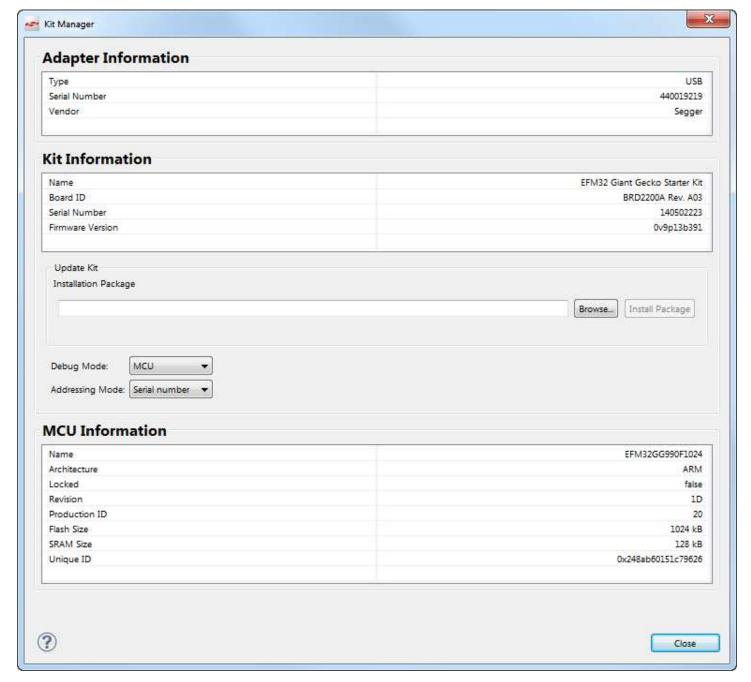


Figure 11.1. Kit Manager

11.2 Firmware Upgrades

Upgrading the kit firmware is done through Simplicity Studio. Simplicity Studio will automatically check for new updates on startup.

You can also use the Kit Manager for manual upgrades. Click the [Browse] button in the [Update Kit] section to select the correct file ending in ".emz". Then, click the [Install Package] button.