: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

NPN Silicon Switching Transistor

- Low collector-emitter saturation voltage
- Complementary type:

SMBT2907A / MMBT2907A (PNP)

- Pb-free (RoHS compliant) package
- Qualified according AEC Q101

Type	Marking	Pin Configuration			Package
SMBT2222A/MMBT2222AA	s1P	$1=\mathrm{B}$	$2=\mathrm{E}$	$3=\mathrm{C}$	SOT23

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\text {CEO }}$	40	V
Collector-base voltage	$V_{\text {CBO }}$	75	
Emitter-base voltage	$V_{\text {EBO }}$	6	
Collector current	I_{C}	600	mA
Total power dissipation- $T_{\mathrm{S}} \leq 77^{\circ} \mathrm{C}$	$P_{\text {tot }}$	330	mW
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$	-65 ... 150	
Thermal Resistance			
Parameter	Symbol	Value	Unit
Junction - soldering point ${ }^{1}$)	$R_{\text {thJS }}$	≤ 220	K/W

[^0]Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Collector-emitter breakdown voltage $I_{\mathrm{C}}=10 \mathrm{~mA}, I_{\mathrm{B}}=0$	$V_{\text {(BR)CEO }}$	40	-	-	V
Collector-base breakdown voltage $I_{C}=10 \mu \mathrm{~A}, I_{\mathrm{E}}=0$	$V_{(\mathrm{BR}) \mathrm{CBO}}$	75	-	-	
Emitter-base breakdown voltage $I_{E}=10 \mu \mathrm{~A}, I_{C}=0$	$V_{(\mathrm{BR}) \mathrm{EBO}}$	6	-	-	
Collector-base cutoff current $\begin{aligned} & V_{\mathrm{CB}}=60 \mathrm{~V}, I_{\mathrm{E}}=0 \\ & V_{\mathrm{CB}}=60 \mathrm{~V}, I_{\mathrm{E}}=0, T_{\mathrm{A}}=150^{\circ} \mathrm{C} \end{aligned}$	$I_{\text {CBO }}$	-		$\begin{gathered} 0.01 \\ 10 \end{gathered}$	$\mu \mathrm{A}$
Emitter-base cutoff current $V_{\mathrm{EB}}=3 \mathrm{~V}, I_{\mathrm{C}}=0$	IEBO	-	-	10	nA
DC current gain ${ }^{1)}$ $\begin{aligned} & I_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V} \\ & I_{\mathrm{C}}=1 \mathrm{~mA}, V_{\mathrm{CE}}=10 \mathrm{~V} \\ & I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=10 \mathrm{~V} \\ & I_{\mathrm{C}}=150 \mathrm{~mA}, V_{\mathrm{CE}}=1 \mathrm{~V} \\ & I_{\mathrm{C}}=150 \mathrm{~mA}, V_{\mathrm{CE}}=10 \mathrm{~V} \\ & I_{\mathrm{C}}=500 \mathrm{~mA}, V_{\mathrm{CE}}=10 \mathrm{~V} \end{aligned}$	$h_{\text {FE }}$	$\begin{gathered} 35 \\ 50 \\ 75 \\ 50 \\ 100 \\ 40 \end{gathered}$		300	-
Collector-emitter saturation voltage ${ }^{1)}$ $\begin{aligned} & I_{\mathrm{C}}=150 \mathrm{~mA}, I_{\mathrm{B}}=15 \mathrm{~mA} \\ & I_{\mathrm{C}}=500 \mathrm{~mA}, I_{\mathrm{B}}=50 \mathrm{~mA} \end{aligned}$	$V_{\text {CEsat }}$			$\begin{gathered} 0.3 \\ 1 \end{gathered}$	V
Base emitter saturation voltage ${ }^{1 \text {) }}$ $\begin{aligned} & I_{\mathrm{C}}=150 \mathrm{~mA}, I_{\mathrm{B}}=15 \mathrm{~mA} \\ & I_{\mathrm{C}}=500 \mathrm{~mA}, I_{\mathrm{B}}=50 \mathrm{~mA} \end{aligned}$	$V_{\text {BEsat }}$	0.6		$\begin{gathered} 1.2 \\ 2 \end{gathered}$	

[^1]Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics					
Transition frequency $I_{\mathrm{C}}=20 \mathrm{~mA}, V_{\mathrm{CE}}=20 \mathrm{~V}, f=100 \mathrm{MHz}$	$f_{\text {T }}$	300	-	-	MHz
Collector-base capacitance $V_{\mathrm{CB}}=10 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{c b}$	-	2.5	5	pF
Emitter-base capacitance $V_{\mathrm{EB}}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {eb }}$	-	-	35	
Short-circuit input impedance $\begin{aligned} & I_{\mathrm{C}}=1 \mathrm{~mA}, V_{\mathrm{CE}}=10 \mathrm{~V}, f=1 \mathrm{kHz} \\ & I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=10 \mathrm{~V}, f=1 \mathrm{kHz} \end{aligned}$	$h_{11 \mathrm{e}}$	$\begin{gathered} 2 \\ 0.25 \end{gathered}$	-	$\begin{gathered} 8 \\ 1.25 \end{gathered}$	$\mathrm{k} \Omega$
Open-circuit reverse voltage transf. ratio $\begin{aligned} & I_{\mathrm{C}}=1 \mathrm{~mA}, V_{\mathrm{CE}}=10 \mathrm{~V}, f=1 \mathrm{kHz} \\ & I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=10 \mathrm{~V}, f=1 \mathrm{kHz} \end{aligned}$	$h_{12 \mathrm{e}}$			8	10-4
Short-circuit forward current transf. ratio $\begin{aligned} & I_{\mathrm{C}}=1 \mathrm{~mA}, V_{\mathrm{CE}}=10 \mathrm{~V}, f=1 \mathrm{kHz} \\ & I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=10 \mathrm{~V}, f=1 \mathrm{kHz} \end{aligned}$	$h_{21 \mathrm{e}}$	$\begin{aligned} & 50 \\ & 75 \end{aligned}$		$\begin{aligned} & 300 \\ & 375 \end{aligned}$	-
Open-circuit output admittance $\begin{aligned} & I_{\mathrm{C}}=1 \mathrm{~mA}, V_{\mathrm{CE}}=10 \mathrm{~V}, f=1 \mathrm{kHz} \\ & I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=10 \mathrm{~V}, f=1 \mathrm{kHz} \end{aligned}$	$h_{22 e}$	$\begin{gathered} 5 \\ 25 \end{gathered}$		$\begin{gathered} 35 \\ 200 \end{gathered}$	$\mu \mathrm{S}$
Delay time $\begin{aligned} & V_{\mathrm{CC}}=30 \mathrm{~V}, I_{\mathrm{C}}=150 \mathrm{~mA}, I_{\mathrm{B} 1}=15 \mathrm{~mA}, \\ & V_{\mathrm{BE} \text { (off) }}=0.5 \mathrm{~V} \end{aligned}$	$t_{\text {d }}$	-	-	10	ns
Rise time $\begin{aligned} & V_{\mathrm{CC}}=30 \mathrm{~V}, I_{\mathrm{C}}=150 \mathrm{~mA}, I_{\mathrm{B} 1}=15 \mathrm{~mA}, \\ & V_{\mathrm{BE}(\text { off })}=0.5 \mathrm{~V} \end{aligned}$	t_{r}	-	-	25	
Storage time $V_{\mathrm{CC}}=30 \mathrm{~V}, I_{\mathrm{C}}=150 \mathrm{~mA}, I_{\mathrm{B} 1}=I_{\mathrm{B} 2}=15 \mathrm{~mA}$	$t_{\text {stg }}$	-	-	225	
Fall time $V_{\mathrm{CC}}=30 \mathrm{~V}, I_{\mathrm{C}}=150 \mathrm{~mA}, I_{\mathrm{B} 1}=I_{\mathrm{B} 2}=15 \mathrm{~mA}$	$t_{\text {f }}$	-	-	60	
Noise figure $\begin{aligned} & I_{\mathrm{C}}=100 \mu \mathrm{~A}, V_{\mathrm{CE}}=10 \mathrm{~V}, f=1 \mathrm{kHz}, \\ & \Delta f=200 \mathrm{~Hz}, R_{\mathrm{S}}=1 \mathrm{k} \Omega \end{aligned}$	F	-	-	4	dB

Test circuit

Delay and rise time

Storage and fall time

Oscillograph: $R>100 \Omega, C<12 \mathrm{pF}, t_{\mathrm{r}}<5 \mathrm{~ns}$

$$
\begin{aligned}
& \text { DC current gain } h_{\text {FE }}=f\left(I_{\mathrm{C}}\right) \\
& V_{\mathrm{CE}}=10 \mathrm{~V}
\end{aligned}
$$

Transition frequency $f_{\top}=f\left(I_{\mathrm{C}}\right)$
$V_{C E}=20 \mathrm{~V}$

Saturation voltage $I_{\mathrm{C}}=f\left(V_{\mathrm{BEsat}} ; V_{\mathrm{CEsat}}\right)$ $h_{\text {FE }}=10$

Collector-base capacitance $C_{c b}=f\left(V_{C B}\right)$ Emitter-base capacitance $C_{\text {eb }}=f\left(V_{\mathrm{EB}}\right)$

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$

Delay time $t_{\mathrm{d}}=f\left(I_{\mathrm{C}}\right)$
Rise time $t_{\mathrm{r}}=f\left(I_{\mathrm{C}}\right)$

Permissible Pulse Load

$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$

Storage time $t_{\text {stg }}=f\left(I_{\mathrm{C}}\right)$
Fall time $t_{\mathrm{f}}=f\left(I_{\mathrm{C}}\right)$

Package Outline

1) Lead width can be 0.6 max. in dambar area

Foot Print

Marking Layout (Example)

Standard Packing
Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Edition 2009-11-16

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

[^0]: ${ }^{1}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note ANO77 (Thermal Resistance Calculation)

[^1]: ${ }^{1}$ Pulse test: $\mathrm{t}<300 \mu \mathrm{~s} ; \mathrm{D}<2 \%$

