

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

High Current Surface Mount PNP Silicon Switching Transistor for Load Management in Portable Applications

Features

- AEC-Q101 Qualified and PPAP Capable
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_A = 25°C)

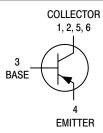
Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	-35	Vdc
Collector-Base Voltage	V _{CBO}	-55	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current - Continuous	I _C	-2.0	Adc
Collector Current - Peak	I _{CM}	-5.0	Α
Electrostatic Discharge	ESD	HBM Class 3 MM Class C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation T _A = 25°C Derate above 25°C	P _D (Note 1)	625 5.0	mW mW/°C
Thermal Resistance, Junction-to-Ambient	R _{θJA} (Note 1)	200	°C/W
Total Device Dissipation T _A = 25°C Derate above 25°C	P _D (Note 2)	1.0 8.0	W mW/°C
Thermal Resistance, Junction-to-Ambient	R _{θJA} (Note 2)	120	°C/W
Thermal Resistance, Junction-to-Lead #1	$R_{ hetaJL}$	80	°C/W
Total Device Dissipation (Single Pulse < 10 sec.)	P _{Dsingle} (Notes 2 & 3)	1.75	W
Junction and Storage Temperature Range	T _J , T _{stg}	–55 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- 1. FR-4 @ Minimum Pad
- 2. FR-4 @ 1.0 X 1.0 inch Pad
- 3. ref: Figure 9


ON Semiconductor®

http://onsemi.com

35 VOLTS 2.0 AMPS PNP TRANSISTOR

CASE 318G TSOP-6 STYLE 6

MARKING DIAGRAM

G4 = Specific Device Code

M = Date Code

= Pb-Free Package
 (Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
MBT35200MT1G	TSOP-6 (Pb-Free)	3,000 / Tape & Reel
SMBT35200MT1G	TSOP-6 (Pb-Free)	3,000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Typical	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage ($I_C = -10$ mAdc, $I_B = 0$)	V _{(BR)CEO}	-35	-45	_	Vdc
Collector – Base Breakdown Voltage $(I_C = -0.1 \text{ mAdc}, I_E = 0)$	V _{(BR)CBO}	-55	-65	-	Vdc
Emitter – Base Breakdown Voltage (I _E = -0.1 mAdc, I _C = 0)	V _{(BR)EBO}	-5.0	-7.0	-	Vdc
Collector Cutoff Current (V _{CB} = -35 Vdc, I _E = 0)	I _{CBO}	=	-0.03	-0.1	μAdc
Collector-Emitter Cutoff Current (V _{CES} = -35 Vdc)	I _{CES}	=	-0.03	-0.1	μAdc
Emitter Cutoff Current (V _{EB} = -4.0 Vdc)	I _{EBO}	-	-0.01	-0.1	μAdc
ON CHARACTERISTICS	•				
DC Current Gain (Note 1)	h _{FE}	100 100 100	200 200 200	- 400 -	
Collector – Emitter Saturation Voltage (Note 1) ($I_C = -0.8$ A, $I_B = -0.008$ A) ($I_C = -1.2$ A, $I_B = -0.012$ A) ($I_C = -2.0$ A, $I_B = -0.02$ A)	V _{CE(sat)}	- - -	-0.125 -0.175 -0.260	-0.15 -0.20 -0.31	V
Base – Emitter Saturation Voltage (Note 1) $(I_C = -1.2 \text{ A}, I_B = -0.012 \text{ A})$	V _{BE(sat)}	-	-0.68	-0.85	V
Base – Emitter Turn–on Voltage (Note 1) (I _C = -2.0 A, V _{CE} = -3.0 V)	V _{BE(on)}	-	-0.81	-0.875	V
Cutoff Frequency ($I_C = -100 \text{ mA}$, $V_{CE} = -5.0 \text{ V}$, $f = 100 \text{ MHz}$)	f _T	100	-	-	MHz
Input Capacitance (V _{EB} = -0.5 V, f = 1.0 MHz)	Cibo	-	600	650	pF
Output Capacitance (V _{CB} = -3.0 V, f = 1.0 MHz)	Cobo	-	85	100	pF
Turn-on Time (V_{CC} = -10 V, I_{B1} = -100 mA, I_{C} = -1 A, R_{L} = 3 Ω)	t _{on}	-	35	-	nS
Turn-off Time (V _{CC} = -10 V, I _{B1} = I _{B2} = -100 mA, I _C = 1 A, R _L = 3 Ω)	t _{off}	-	225	-	nS

^{1.} Pulsed Condition: Pulse Width = 300 μsec, Duty Cycle ≤ 2%

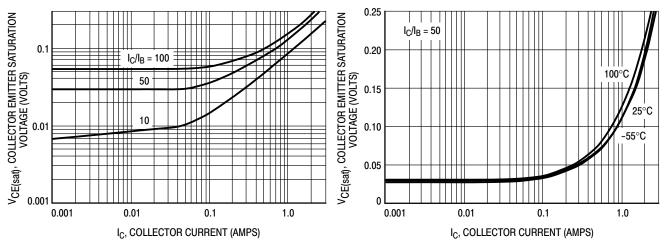


Figure 1. Collector Emitter Saturation Voltage versus Collector Current

Figure 2. Collector Emitter Saturation Voltage versus Collector Current

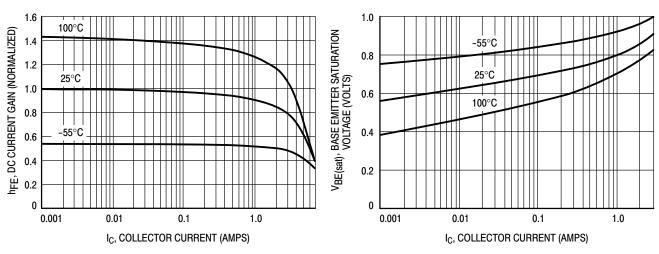


Figure 3. DC Current Gain versus Collector Current

Figure 5. Base Emitter Turn-On Voltage versus Collector Current

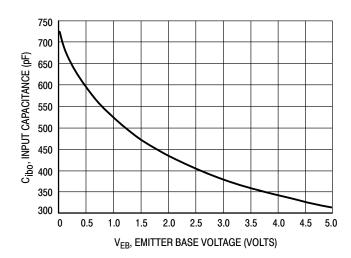


Figure 6. Input Capacitance

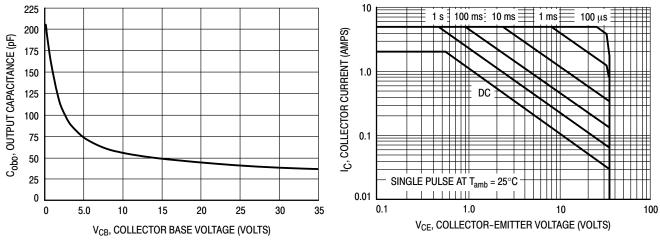


Figure 7. Output Capacitance

Figure 8. Safe Operating Area

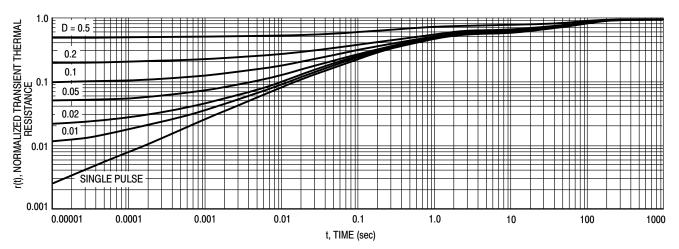
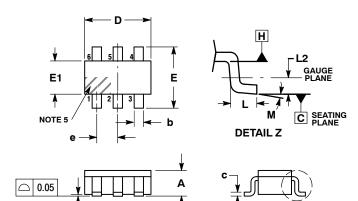



Figure 9. Normalized Thermal Response

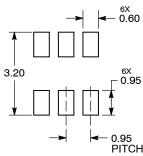
PACKAGE DIMENSIONS

TSOP-6 CASE 318G-02 ISSUE U

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

- DIMENSIONING AND TOLERANCING PER ASME 114.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM
 LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR
 GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.
- PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.


	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.90	1.00	1.10	
A1	0.01	0.06	0.10	
b	0.25	0.38	0.50	
С	0.10	0.18	0.26	
D	2.90	3.00	3.10	
E	2.50	2.75	3.00	
E1	1.30	1.50	1.70	
е	0.85	0.95	1.05	
L	0.20	0.40	0.60	
L2	0.25 BSC			
M	0°	– 10°		

STYLE 6:

- PIN 1. COLLECTOR 2. COLLECTOR

 - 3.
 - BASE EMITTER
 - COLLECTOR
 - 6. COLLECTOR

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent—Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Α1

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative