mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Digital Transistors (BRT) R1 = 10 k Ω , R2 = ∞ k Ω

NPN Transistors with Monolithic Bias Resistor Network

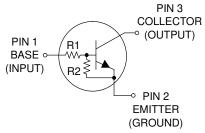
This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base–emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

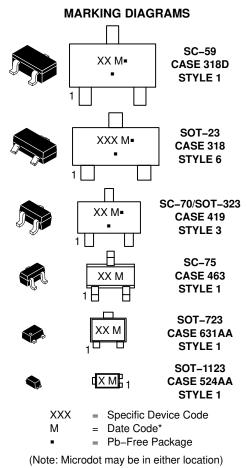
Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_A = 25° C)

Rating	Symbol	Max	Unit
Collector-Base Voltage	V _{CBO}	50	Vdc
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Collector Current – Continuous	Ι _C	100	mAdc
Input Forward Voltage	V _{IN(fwd)}	40 Vdc	
Input Reverse Voltage	V _{IN(rev)}	6	Vdc


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



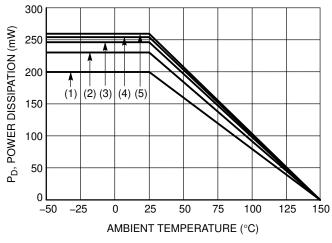
ON Semiconductor®

www.onsemi.com

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering, marking, and shipping information in the package dimensions section on page 2 of this data sheet.


Table 1. ORDERING INFORMATION

Device	Part Marking	Package	Shipping [†]
MUN2215T1G	8E	SC–59 (Pb–Free)	3000 / Tape & Reel
MMUN2215LT1G, SMMUN2215LT1G*	A8E	SOT-23 (Pb-Free)	3000 / Tape & Reel
MUN5215T1G, SMUN5215T1G*	8E	SC-70/SOT-323 (Pb-Free)	3000 / Tape & Reel
DTC114TET1G	8E	SC-75 (Pb-Free)	3000 / Tape & Reel
DTC114TM3T5G	8E	SOT-723 (Pb-Free)	8000 / Tape & Reel
NSBC114TF3T5G	K (90°)	SOT-1123 (Pb-Free)	8000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable.

* (xx°) = Degree rotation in the clockwise direction.

(1) SC-75 and SC-70/SOT-323; Minimum Pad
(2) SC-59; Minimum Pad
(3) SOT-23; Minimum Pad
(4) SOT-1123; 100 mm², 1 oz. copper trace

(5) SOT-723; Minimum Pad

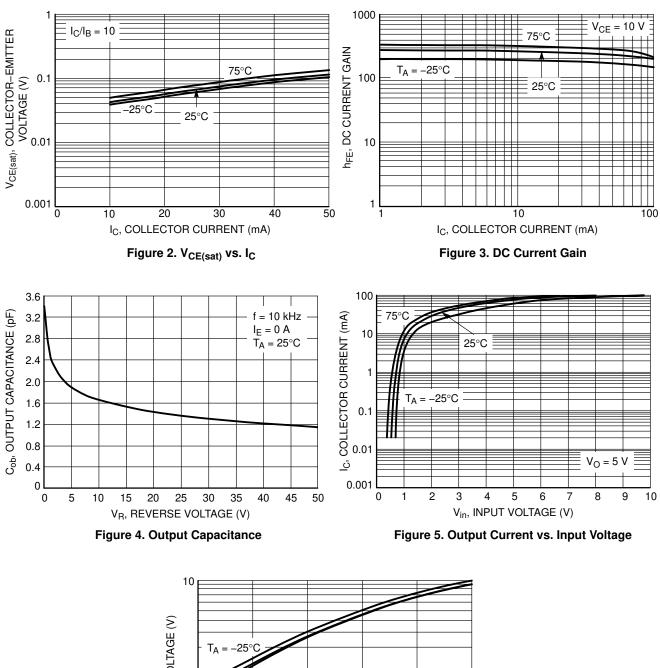
Figure 1. Derating Curve

Table 2. THERMAL CHARACTERISTICS

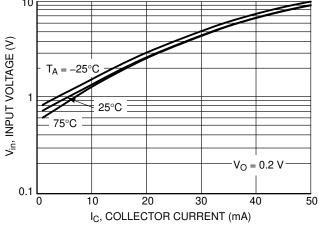
	Characteristic	Symbol	Max	Unit
THERMAL CHARACTERISTIC	CS (SC–59) (MUN2215)			
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 1) (Note 2) Derate above 25^{C} (Note 2)	(Note 1)	P _D	230 338 1.8 2.7	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	R _{θJA}	540 370	°C/W
Thermal Resistance, Junction to Lead (Note 2)	(Note 1)	R _{θJL}	264 287	°C/W
Junction and Storage Temper	ature Range	T _J , T _{stg}	-55 to +150	°C
THERMAL CHARACTERISTIC	CS (SOT-23) (MMUN2215L)			
$\begin{array}{l} \mbox{Total Device Dissipation} \\ T_A = 25^\circ C & (Note 1) \\ & (Note 2) \\ \mbox{Derate above } 25^\circ C \\ & (Note 2) \end{array}$	(Note 1)	PD	246 400 2.0 3.2	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ heta JA}$	508 311	°C/W
Thermal Resistance, Junction to Lead (Note 2)	(Note 1)	R _{θJL}	174 208	°C/W
Junction and Storage Temper	ature Range	T _J , T _{stg}	–55 to +150	°C
THERMAL CHARACTERISTIC	CS (SC–70/SOT–323) (MUN5215)			
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 1) (Note 2) Derate above 25^{C} (Note 2)	(Note 1)	PD	202 310 1.6 2.5	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	R _{θJA}	618 403	°C/W
Thermal Resistance, Junction to Lead (Note 2)	(Note 1)	R _{θJL}	280 332	°C/W
Junction and Storage Temper	ature Range	T _J , T _{stg}	–55 to +150	°C
THERMAL CHARACTERISTIC	CS (SC-75) (DTC114TE)			
$\begin{array}{l} \mbox{Total Device Dissipation} \\ T_A = 25^\circ C & (Note 1) \\ & (Note 2) \\ \mbox{Derate above } 25^\circ C \\ & (Note 2) \end{array}$	(Note 1)	PD	200 300 1.6 2.4	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ heta JA}$	600 400	°C/W
Junction and Storage Temper	ature Range	T _J , T _{stg}	-55 to +150	°C
THERMAL CHARACTERISTIC	CS (SOT-723) (DTC114TM3)			
$\begin{array}{l} \mbox{Total Device Dissipation} \\ T_A = 25^\circ C & (Note 1) \\ (Note 2) \\ \mbox{Derate above } 25^\circ C \\ (Note 2) \end{array}$	(Note 1)	P _D	260 600 2.0 4.8	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ heta JA}$	480 205	°C/W
	ature Range	T _J , T _{stg}	-55 to +150	°C

FR-4 @ 1.0 x 1.0 Inch Pad.
 FR-4 @ 100 mm², 1 oz. copper traces, still air.
 FR-4 @ 500 mm², 1 oz. copper traces, still air.

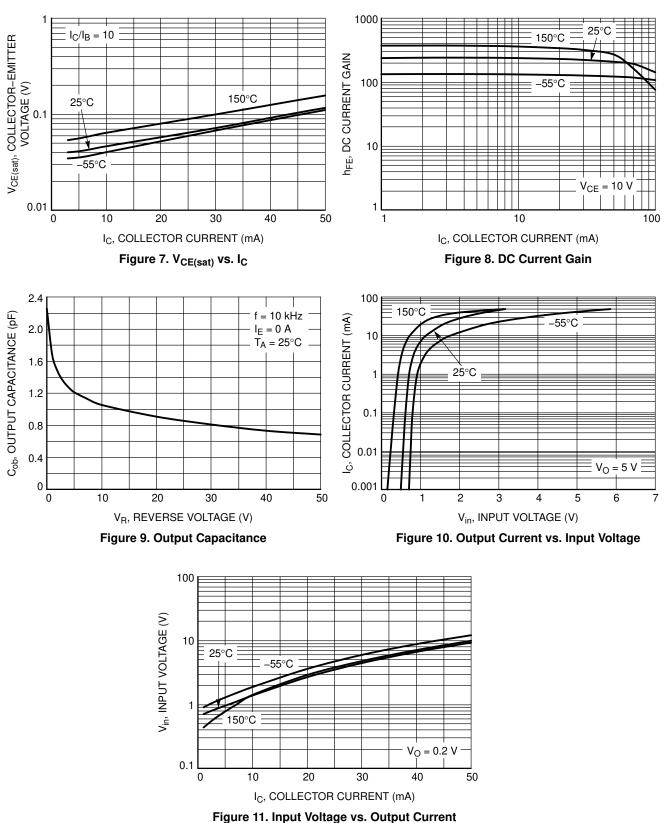
Table 2. THERMAL CHARACTERISTICS


Characteristic	Symbol	Мах	Unit
THERMAL CHARACTERISTICS (SOT-1123) (NSBC114TF3)			
$\begin{array}{l} \mbox{Total Device Dissipation} \\ T_A = 25^\circ C & (Note 3) \\ & (Note 4) \\ \mbox{Derate above } 25^\circ C & (Note 3) \\ & (Note 4) \end{array}$	PD	254 297 2.0 2.4	mW mW/°C
Thermal Resistance,(Note 3)Junction to Ambient(Note 4)	$R_{ extsf{ heta}JA}$	493 421	°C/W
Thermal Resistance, Junction to Lead (Note 3)	R _{θJL}	193	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

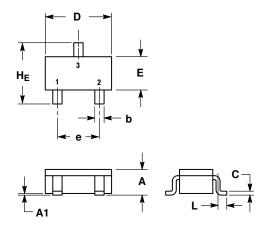
FR-4 @ Minimum Pad.
 FR-4 @ 1.0 x 1.0 Inch Pad.
 FR-4 @ 100 mm², 1 oz. copper traces, still air.
 FR-4 @ 500 mm², 1 oz. copper traces, still air.


Table 3. ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$, unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Base Cutoff Current $(V_{CB} = 50 \text{ V}, I_E = 0)$	I _{CBO}	-	-	100	nAdc
Collector–Emitter Cutoff Current $(V_{CE} = 50 \text{ V}, I_B = 0)$	I _{CEO}	-	_	500	nAdc
Emitter–Base Cutoff Current $(V_{EB} = 6.0 \text{ V}, I_C = 0)$	I _{EBO}	_	-	0.9	mAdc
Collector–Base Breakdown Voltage $(I_C = 10 \ \mu A, \ I_E = 0)$	V _{(BR)CBO}	50	_	_	Vdc
Collector–Emitter Breakdown Voltage (Note 5) $(I_C = 2.0 \text{ mA}, I_B = 0)$	V _(BR) CEO	50	_	-	Vdc
ON CHARACTERISTICS					
DC Current Gain (Note 5) $(I_C = 5.0 \text{ mA}, V_{CE} = 10 \text{ V})$	h _{FE}	160	350	-	
Collector–Emitter Saturation Voltage (Note 5) $(I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA})$	V _{CE(sat)}	_	-	0.25	Vdc
Input Voltage (off) $(V_{CE} = 5.0 \text{ V}, I_C = 100 \ \mu\text{A})$	V _{i(off)}	_	0.6	0.5	Vdc
Input Voltage (on) $(V_{CE} = 0.3 \text{ V}, I_C = 10 \text{ mA})$	V _{i(on)}	1.7	1.2	_	Vdc
Output Voltage (on) (V _{CC} = 5.0 V, V _B = 2.5 V, R _L = 1.0 k Ω)	V _{OL}	_	-	0.2	Vdc
Output Voltage (off) $(V_{CC} = 5.0 \text{ V}, V_B = 0.25 \text{ V}, R_L = 1.0 \text{ k}\Omega)$	V _{OH}	4.9	-	_	Vdc
Input Resistor	R1	7.0	10	13	kΩ
Resistor Ratio	R ₁ /R ₂	-	_	-	


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulsed Condition: Pulse Width = 300 msec, Duty Cycle $\leq 2\%$.

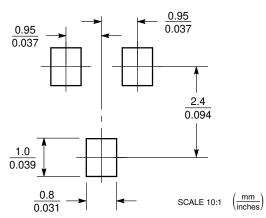
TYPICAL CHARACTERISTICS MUN2215, MMUN2215L, MUN5215, DTC114TE, DTC114TM3



TYPICAL CHARACTERISTICS – NSBC114TF3

PACKAGE DIMENSIONS

SC-59 CASE 318D-04 ISSUE H



NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

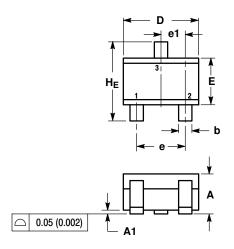
	MILLIMETERS						
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.00	1.15	1.30	0.039	0.045	0.051	
A1	0.01	0.06	0.10	0.001	0.002	0.004	
b	0.35	0.43	0.50	0.014	0.017	0.020	
c	0.09	0.14	0.18	0.003	0.005	0.007	
D	2.70	2.90	3.10	0.106	0.114	0.122	
E	1.30	1.50	1.70	0.051	0.059	0.067	
е	1.70	1.90	2.10	0.067	0.075	0.083	
L	0.20	0.40	0.60	0.008	0.016	0.024	
HE	2.50	2.80	3.00	0.099	0.110	0.118	

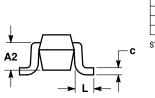
STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

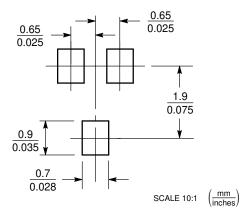



*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

www.onsemi.com 8

PACKAGE DIMENSIONS

SC-70 (SOT-323) CASE 419-04 **ISSUE N**


NOTES: DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.

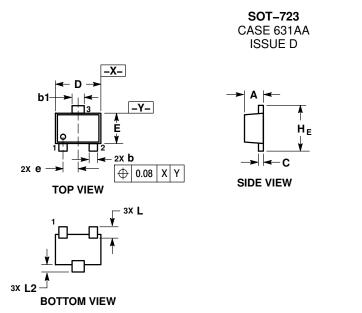
	М	ILLIMETE	RS			
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2		0.70 REF			0.028 REF	-
b	0.30	0.35	0.40	0.012	0.014	0.016
С	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.10	2.20	0.071	0.083	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1		0.65 BSC 0.026 BSC			;	
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095


STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS


DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.

	MIL	LIMETE	RS		INCHES	;
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.70	0.80	0.90	0.027	0.031	0.035
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.15	0.20	0.30	0.006	0.008	0.012
С	0.10	0.15	0.25	0.004	0.006	0.010
D	1.55	1.60	1.65	0.061	0.063	0.065
E	0.70	0.80	0.90	0.027	0.031	0.035
е	1	.00 BSC)	0.04 BSC		
L	0.10	0.15	0.20	0.004	0.006	0.008
HE	1.50	1.60	1.70	0.060	0.063	0.067

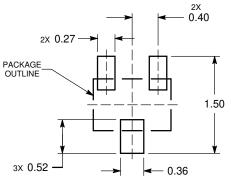
0.039 $\left(\frac{mm}{inches}\right)$ SCALE 10:1 *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

> www.onsemi.com 10

PACKAGE DIMENSIONS

NOTES: I. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MILLIMETERS DIM
 0.45
 0.50
 0.55

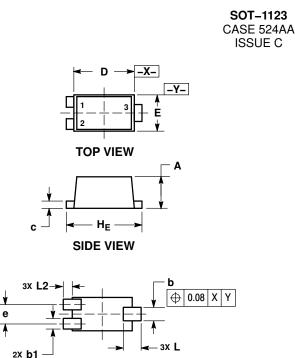
 0.15
 0.21
 0.27
 Α b
 0.25
 0.31
 0.37


 0.07
 0.12
 0.17

 1.15
 1.20
 1.25
 b1 C D 0.75 0.80 0.85 Е e H⊧ 0.40 BS0 1.15 1.20 1.25 0.29 REF L L2 0.15 0.20 0.25

STYLE 1:

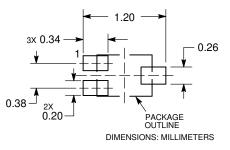
PIN 1. BASE 2. EMITTER 3. COLLECTOR



DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS


BOTTOM VIEW

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE
- FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.34	0.40		
b	0.15	0.28		
b1	0.10	0.20		
С	0.07	0.17		
D	0.75	0.85		
Е	0.55	0.65		
е	0.35	0.40		
HE	0.95	1.05		
L	0.185	REF		
L2	0.05	0.15		
STYL PIN	1. BAS 2. EMI			

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over the. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights on the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, d

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative