

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SMP3003

P-Channel Power MOSFET -75V, -100A, 8.0mΩ, TO-263-2L/TO-263

http://onsemi.com

ON Semiconductor®

Features

• ON-resistance RDS(on)1= $6.2m\Omega$ (typ.)

· 4V drive

• Input capacitance Ciss=13400pF (typ.)

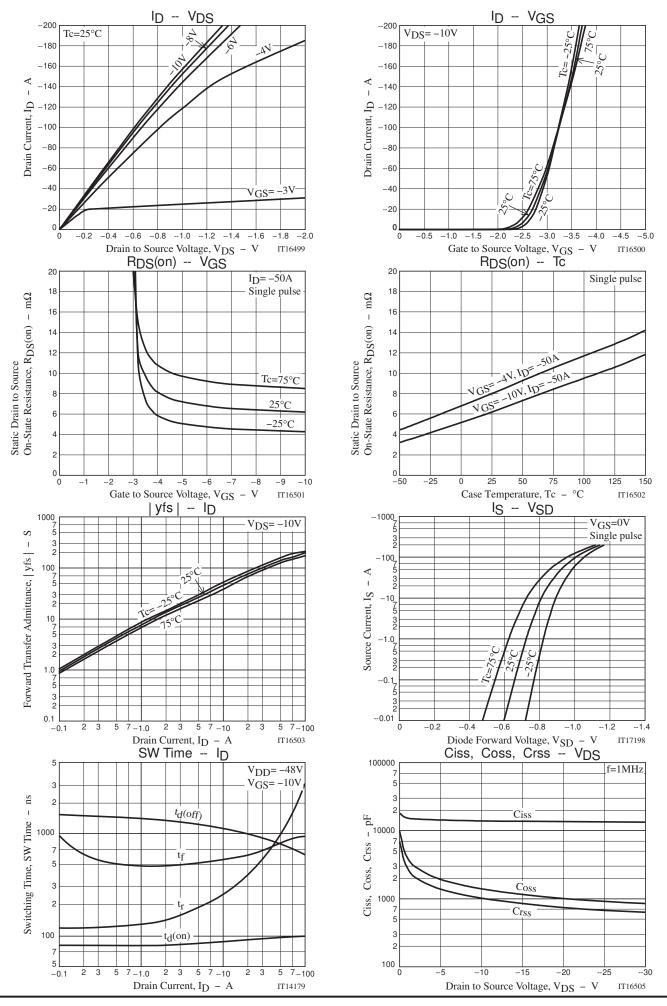
Specifications

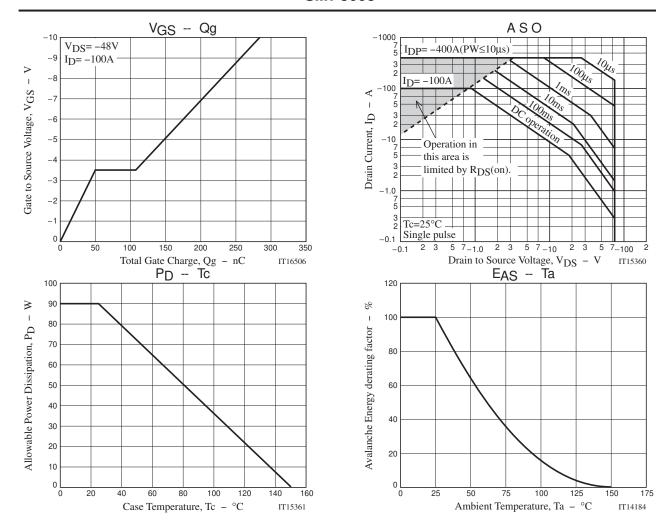
Absolute Maximum Ratings at Ta=25°C

Parameter	Symbol	Conditions	Ratings	Unit
Drain to Source Voltage	VDSS		-75	V
Gate to Source Voltage	VGSS		±20	V
Drain Current (DC)	ID		-100	Α
Drain Current (Pulse)	IDP	PW≤10μs, duty cycle≤1%	-400	Α
Allowable Power Dissipation	PD	Tc=25°C	90	W
Channel Temperature	Tch		150	°C
Storage Temperature	Tstg		-55 to +150	°C
Avalanche Energy (Single Pulse) *1	EAS		468	mJ
Avalanche Current *2	IAV		-60	Α

Note: *1 V_{DD} =-48V, L=100 μ H, I_{AV} =-60A (Fig.1)

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

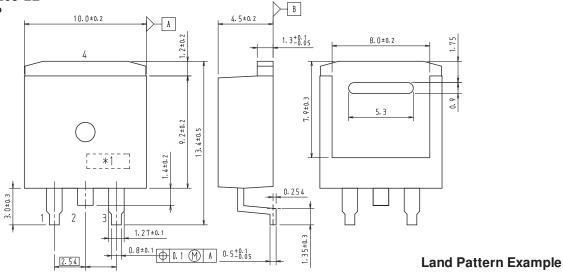

Electrical Characteristics at Ta=25°C

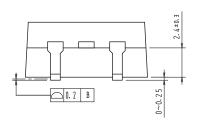

Parameter	Symbol	Conditions	Ratings			1.1-24
			min	typ	max	Unit
Drain to Source Breakdown Voltage	V(BR)DSS	I _D =-1mA, V _G S=0V	-75			V
Zero-Gate Voltage Drain Current	IDSS	V _{DS} =-75V, V _{GS} =0V			-10	μΑ
Gate to Source Leakage Current	IGSS	V _{GS} =±16V, V _{DS} =0V			±10	μΑ
Cutoff Voltage	VGS(off)	V _{DS} =-10V, I _D =-1mA	-1.2		-2.6	V
Forward Transfer Admittance	yfs	V _{DS} =-10V, I _D =-50A		140		S
Static Drain to Source On-State Resistance	R _{DS} (on)1	I _D =-50A, V _{GS} =-10V		6.2	8.0	$m\Omega$
	R _{DS} (on)2	I _D =-50A, V _G S=-4V		8.0	11	mΩ
Input Capacitance	Ciss	V _{DS} =-20V, f=1MHz		13400		pF
Output Capacitance	Coss			1000		pF
Reverse Transfer Capacitance	Crss			740		pF
Turn-ON Delay Time	t _d (on)	See Fig.2		95		ns
Rise Time	tr			1000		ns
Turn-OFF Delay Time	t _d (off)			800		ns
Fall Time	tf			820		ns
Total Gate Charge	Qg	VDS=-48V, VGS=-10V, ID=-100A		280		nC
Gate to Source Charge	Qgs			50		nC
Gate to Drain "Miller" Charge	Qgd			55		nC
Diode Forward Voltage	V _{SD}	I _S =-100A, V _{GS} =0V		-1.0	-1.5	V
Reverse Recovery Time	t _{rr}	See Fig.3		120		ns
Reverse Recovery Charge	Q _{rr}	I _S =-100A, V _{GS} =0V, di/dt=-100A/μs		380		nC

ORDERING INFORMATION

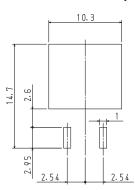
See detailed ordering and shipping information on page 6 of this data sheet.

^{*2} L≤100µH, Single pulse

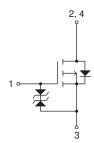

Package Dimensions


SMP3003-DL-1E

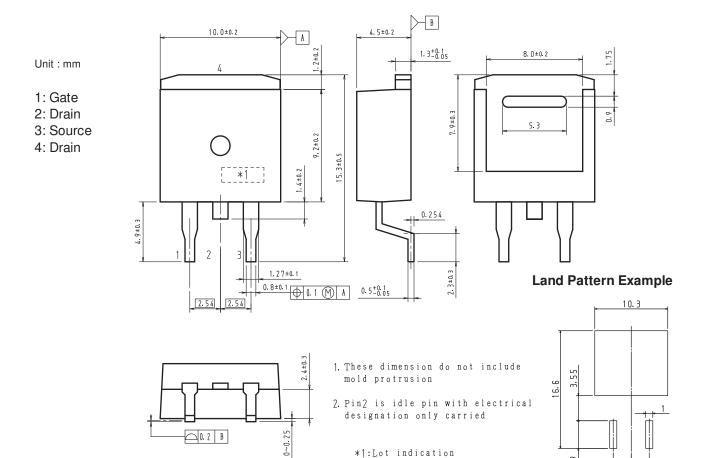
D2PAK/TO-263-2L


CASE 418AP ISSUE O Unit: mm

- 1: Gate
- 2: Drain
- 3: Source
- 4: Drain

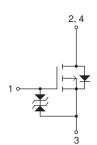

- 1. These dimension do not include mold protrusion
- 2. Pin2 is idle pin with electrical designation only carried
- *1:Lot indication

Packing Type: DL



Electrical Connection

Package Dimensions


SMP3003-TL-1E

Packing Type: TL

Electrical Connection

Ordering & Package Information

Device	Package	Shipping	memo	
SMP3003-DL-1E	TO-263-2L SC-83, TO-263	800	Pb-Free	
SMP3003-TL-1E	TO-263	pcs./reel		

Marking

Fig.1 Unclamped Inductive Switching Test Circuit

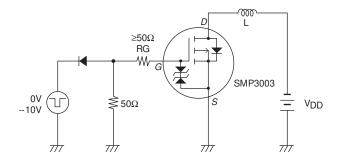


Fig.3 Reverse Recovery Time Test Circuit

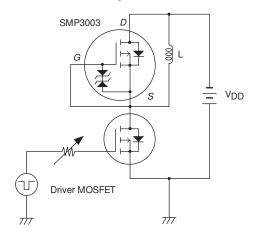
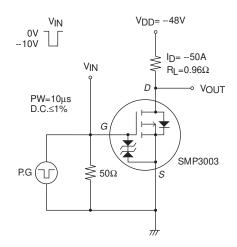



Fig.2 Switching Time Test Circuit

Note on usage: Since the SMP3003 is a MOSFET product, please avoid using this device in the vicinity of highly charged objects.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa