imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Dual PNP Bias Resistor Transistors R1 = 47 k\Omega, R2 = 47 k\Omega PNP Transistors with Monolithic Bias Resistor Network

This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base–emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable*
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

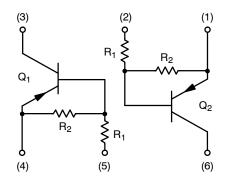
(T_A = 25°C, common for Q1 and Q2, unless otherwise noted)

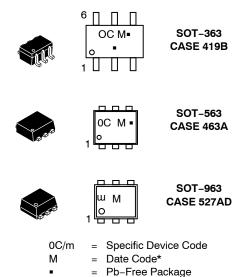
Rating	Symbol	Max	Unit
Collector-Base Voltage	V _{CBO}	50	Vdc
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Collector Current – Continuous	۱ _C	100	mAdc
Input Forward Voltage	V _{IN(fwd)}	40	Vdc
Input Reverse Voltage	V _{IN(rev)}	10	Vdc

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ORDERING INFORMATION

Device	Package	Shipping [†]
MUN5113DW1T1G, SMUN5113DW1T1G*	SOT-363	3,000 / Tape & Reel
NSVMUN5113DW1T3G*	SOT-363	10,000 / Tape & Reel
NSBA144EDXV6T1G	SOT-563	4,000 / Tape & Reel
NSBA144EDXV6T5G	SOT-563	8,000 / Tape & Reel
NSBA144EDP6T5G	SOT-963	8,000 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


ON Semiconductor®

www.onsemi.com

PIN CONNECTIONS

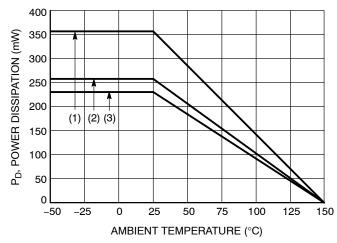
MARKING DIAGRAMS

(Note: Microdot may be in either location)

Dete Cade existence recurrent descediar or

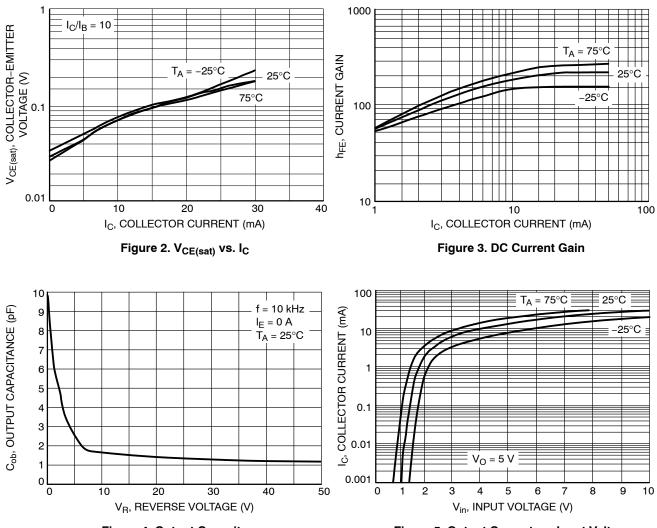
*Date Code orientation may vary depending upon manufacturing location.

THERMAL CHARACTERISTICS


	Characteristic	Symbol	Max	Unit
MUN5113DW1 (SOT-363) One	Junction Heated			
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 1) (Note 2) Derate above $25^{\circ}C$ (I (Note 2)	Note 1)	PD	187 256 1.5 2.0	mW mW/°C
	Note 1) Note 2)	R _{θJA}	670 490	°C/W
MUN5113DW1 (SOT-363) Both	Junction Heated (Note 3)			
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 1) (Note 2) Derate above $25^{\circ}C$ (1 (Note 2)	Note 1)	PD	250 385 2.0 3.0	mW mW/°C
, , , , , , , , , , , , , , , , , , ,	Note 1) Note 2)	R _{θJA}	493 325	°C/W
Thermal Resistance, (I Junction to Lead (Note 2)	Note 1)	R _{θJL}	188 208	°C/W
Junction and Storage Temperati	ure Range	T _J , T _{stg}	–55 to +150	°C
NSBA144EDXV6 (SOT-563) On	e Junction Heated			
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 1) Derate above $25^{\circ}C$ (I	Note 1)	PD	357 2.9	mW mW/°C
Thermal Resistance, Junction to Ambient (I	Note 1)	R _{θJA}	350	°C/W
NSBA144EDXV6 (SOT-563) Bo	th Junction Heated (Note 3)			
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 1)Derate above $25^{\circ}C$ (I	Note 1)	PD	500 4.0	mW mW/°C
Thermal Resistance, Junction to Ambient (I	Note 1)	R _{θJA}	250	°C/W
Junction and Storage Temperati	ure Range	T _J , T _{stg}	–55 to +150	°C
NSBA144EDP6 (SOT-963) One	Junction Heated		•	
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 4) (Note 5) Derate above $25^{\circ}C$ (1 (Note 5)	Note 4)	PD	231 269 1.9 2.2	mW mW/°C
	Note 4) Note 5)	R _{θJA}	540 464	°C/W
NSBA144EDP6 (SOT-963) Botł	n Junction Heated (Note 3)			
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 4) (Note 5)Derate above 25^{\circ}C (Note 5)	Note 4)	PD	339 408 2.7 3.3	mW mW/°C
	Note 4) Note 5)	R _{θJA}	369 306	°C/W
Junction and Storage Temperatu	Ire Bange	T _J , T _{stg}	-55 to +150	°C

FR-4 @ Minimum Pad.
 FR-4 @ 1.0 x 1.0 Inch Pad.
 Both junction heated values assume total power is sum of two equally powered channels.
 FR-4 @ 100 mm², 1 oz. copper traces, still air.
 FR-4 @ 500 mm², 1 oz. copper traces, still air.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$, common for Q_1 and Q_2 , unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•		
Collector-Base Cutoff Current (V _{CB} = 50 V, I _E = 0)	I _{CBO}	-	_	100	nAdc
Collector–Emitter Cutoff Current $(V_{CE} = 50 \text{ V}, I_B = 0)$	I _{CEO}	-	_	500	nAdc
Emitter-Base Cutoff Current $(V_{EB} = 6.0 \text{ V}, I_C = 0)$	I _{EBO}	-	_	0.1	mAdc
Collector-Base Breakdown Voltage $(I_C = 10 \ \mu A, I_E = 0)$	V _(BR) CBO	50	_	_	Vdc
Collector–Emitter Breakdown Voltage (Note 6) $(I_C = 2.0 \text{ mA}, I_B = 0)$	V _{(BR)CEO}	50	_	-	Vdc
ON CHARACTERISTICS					
DC Current Gain (Note 6) ($I_C = 5.0 \text{ mA}, V_{CE} = 10 \text{ V}$)	h _{FE}	80	140	-	
Collector-Emitter Saturation Voltage (Note 6) $(I_C = 10 \text{ mA}, I_B = 0.3 \text{ mA})$	V _{CE(sat)}	-	_	0.25	Vdc
Input Voltage (off) (V _{CE} = 5.0 V, I _C = 100 μA)	V _{i(off)}	_	1.2	_	Vdc
Input Voltage (on) (V _{CE} = 0.2 V, I _C = 3.0 mA)	V _{i(on)}	-	2.0	-	Vdc
Output Voltage (on) (V _{CC} = 5.0 V, V _B = 3.5 V, R _L = 1.0 k Ω)	V _{OL}	_	_	0.2	Vdc
Output Voltage (off) ($V_{CC} = 5.0 \text{ V}, \text{ V}_{B} = 0.5 \text{ V}, \text{ R}_{L} = 1.0 \text{ k}\Omega$)	V _{OH}	4.9	_	-	Vdc
Input Resistor	R1	32.9	47	61.1	kΩ
Resistor Ratio	R ₁ /R ₂	0.8	1.0	1.2	

6. Pulsed Condition: Pulse Width = 300 msec, Duty Cycle \leq 2%.

(1) SOT-363; 1.0 x 1.0 inch Pad
 (2) SOT-563; Minimum Pad
 (3) SOT-963; 100 mm², 1 oz. copper trace

Figure 1. Derating Curve

TYPICAL CHARACTERISTICS MUN5113DW1, NSBA144EDXV6

Figure 4. Output Capacitance

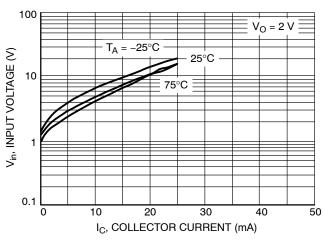


Figure 6. Input Voltage vs. Output Current

TYPICAL CHARACTERISTICS

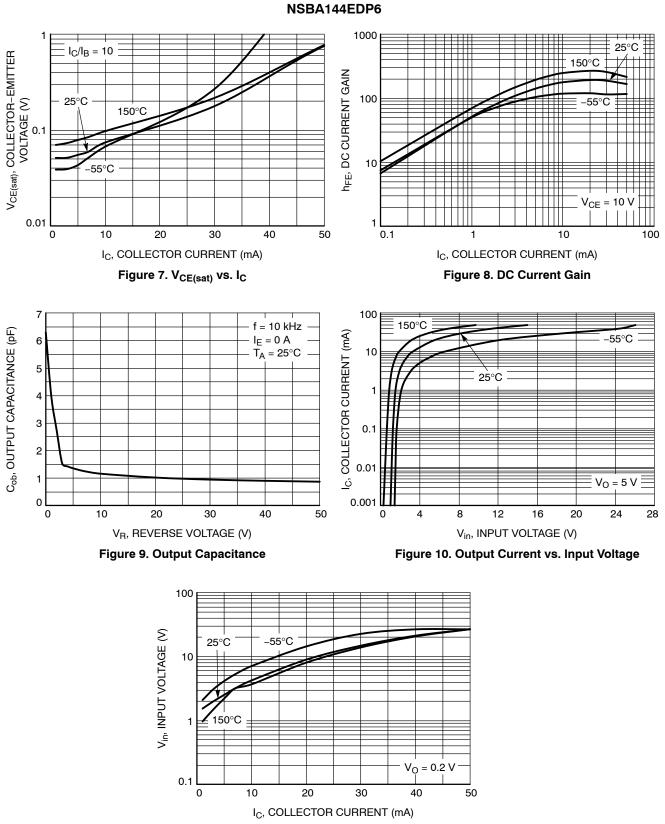
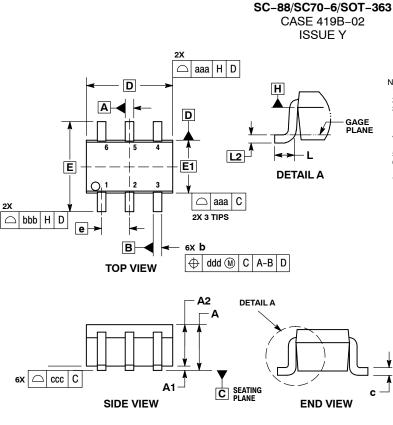
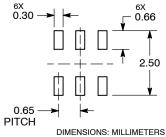



Figure 11. Input Voltage vs. Output Current

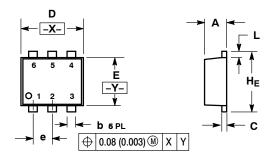
PACKAGE DIMENSIONS



NOTES:

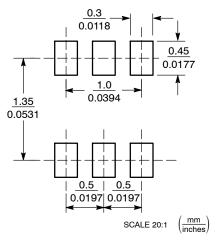
- 1. 2.
- 3.
- 4
- 5. 6.
- ITES: DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRU-SIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H. DATUMS A AND B ARE DETERMINED AT DATUM H. DIMENSIONS 5 AND ¢ APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN 7 ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDI-TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

			- 00			
	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10			0.043
A1	0.00		0.10	0.000		0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
С	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
Е	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
е		0.65 BS	С	0.026 BSC		
L	0.26	0.36	0.46	0.010	0.014	0.018
L2	0.15 BSC			0.006 BSC		
aaa	0.15			0.006		
bbb	0.30			0.012		
ccc	0.10			0.004		
ddd	0.10			0.004		


RECOMMENDED **SOLDERING FOOTPRINT*** 6X

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

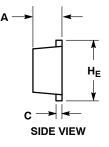
PACKAGE DIMENSIONS

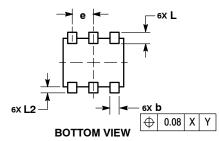

SOT-563, 6 LEAD CASE 463A ISSUE G

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.021	0.023
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.12	0.18	0.003	0.005	0.007
D	1.50	1.60	1.70	0.059	0.062	0.066
E	1.10	1.20	1.30	0.043	0.047	0.051
е	0.5 BSC			0	.02 BSC)
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.50	1.60	1.70	0.059	0.062	0.066

SOLDERING FOOTPRINT*

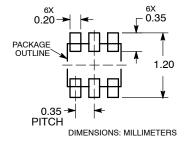



*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOT-963 CASE 527AD ISSUE E

TOP VIEW



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS
 MAXIMUM LEAD THICKNESS INCLUDES LEAD
- FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAI
- BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			
DIM	MIN NOM MA		MAX	
Α	0.34	0.37	0.40	
b	0.10	0.15	0.20	
С	0.07	0.12	0.17	
D	0.95	1.00	1.05	
Е	0.75	0.80	0.85	
е	0.35 BSC			
ΗE	0.95	1.00	1.05	
L	0.19 REF			
L2	0.05	0.10	0.15	

RECOMMENDED MOUNTING FOOTPRINT

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hardles against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative