imall

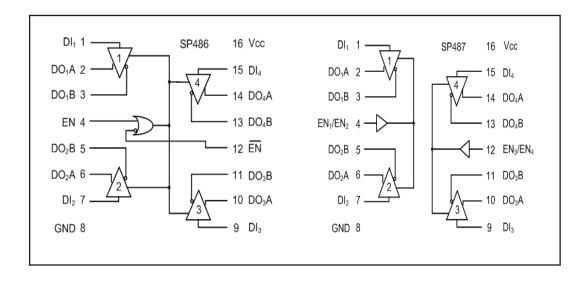
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Quad RS-485/RS-422 Line Drivers

- RS-485 or RS-422 Applications
- Quad Differential Line Drivers
- Tri-state Output Control
- 40ns Typical Driver Propagation Delays
- 5ns Skew
- -7V to +12V Common Mode Output Range
- 100µA Supply Current
- Single +5V Supply Operation
- Pin Compatible with SN75172, SN75174, LTC486 and LTC487

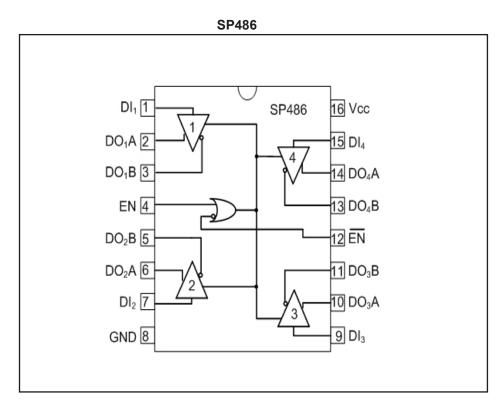
DESCRIPTION

The **SP486** and **SP487** are low-power quad differential line drivers meeting RS-485 and RS-422 standards. The SP486 features a common driver enable control; the SP487 provides independent driver enable controls for each pair of drivers. Both feature tri-state outputs and a wide common-mode output range. SP486 and SP487 are available in a 16-pin SOIC package.

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V _{cc} +7V
Input Voltages
Logic0.5V to (Vcc + 0.5V)
Drivers0.5V to (Vcc + 0.5V)
Driver Output Voltage+/-14V
Input Currents
Logic+/-25mA
Driver+/-25mA
Storage Temperature65°C to +150°C
Power Dissipation
Plastic DIP
(derate 7mW/°C above +70°C)
Small Outline
(derate 7mW/ºC above +70ºC)


ELECTRICAL CHARACTERISTICS

$T_{cc} = +5.0V + -5\%$; typicals at 25°C; $T_{MIN} \le T_{AMB} \le T_{MAX}$ unless otherwise noted.						
PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS	
DC CHARACTERISTICS					^	
DIGITAL INPUTS					DI, EN, \overline{EN} , EN_1/EN_2 , EN_3/EN_4	
Voltage V _{IL}			0.8	Volts		
Voltage V _{IH}	2.0			Volts		
Input Current			+/-2	μA	$V_{IN} = 0V$ to V_{CC}	
DRIVER OUTPUTS			1			
Differential Voltage			5	Volts	I _o = 0; unloaded	
Differential Voltage	2		1	Volts	$R_{L} = 50\Omega$ (RS-422); Figure 1	
Differential Voltage	1.5	2	5	Volts	R _L = 27Ω (RS-485); Figure 1	
Change in Output Magnitude for Complementary Output state			0.2	Volts	$R_L = 27\Omega$ or 50 Ω ; Figure 1	
Common Mode Output Voltage		2.3	3	Volts	$R_L = 27\Omega$ or 50 Ω ; Figure 1	
Change in Common Mode Output Magnitude for Complementary Output state			0.2	Volts	$R_L = 27\Omega$ or 50 Ω ; Figure 1	
Driver Short Circuit Current V _{OH}			+/-250	mA	-7V ≤ V _o ≤ +10V	
Driver Short Circuit Current V			+/-250	mA	-7V ≤ V _o ≤ +10V	
High Impedance Output Current		+/-2	+/-200	μA	$V_0 = -7V \text{ to } +10V$	
POWER REQUIREMENTS						
Supply Voltage	4.75		5.25	Volts		
Supply Current		0.5	10	μA	No load, output enabled	
Supply Current		0.1	10	μA	No load, output disabled	

ELECTRICAL CHARACTERISTICS

 $V_{_{CC}}$ = +5.0V +/-5%; typicals at 25°C; $T_{_{MIN}} \le T_{_{AMB}} \le T_{_{MAX}}$ unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
ENVIRONMENTAL AND MECHANICAL					
Operating Temperature, _C	0		+70	°C	
Operating Temperature, _E	-40		+85	°C	
Storage Temperature	-65		+150	°C	
PackageT		16-pin	SOIC		
AC CHARACTERISTICS					
Maximum Data Rate	10			Mbps	
Propagation Delay, t_{PLH}	20	40	60	ns	R_{DIFF} = 54 ohms, C_{L1} = C_{L2} = 100pF; Figure 2
Propagation Delay, t _{PHL}	20	40	60	ns	$R_{DIFF} = 54 \text{ ohms}, C_{L1} = C_{L2} = 100 \text{pF};$ Figure 2
Differential Driver Skew		5	15	ns	$R_{DIFF} = 54 \text{ ohms}, C_{L1} = C_{L2} = 100 \text{pF};$ Figure 2
Driver Rise Time (t_R)		20		ns	10% to 90%
Driver Fall Time (t_F)		20		ns	90% to 10%
Driver Enable to output High		60	110	ns	C_{L} = 100pF, Figures 3 and 5 (S2 closed)
Driver Enable to output Low		60	115	ns	C_{L} = 100pF, Figures 3 and 5 (S1 closed)
Driver Disable from output High		60	130	ns	$C_L = 15pF$, Figures 3 and 5 (S2 closed)
Driver Disable from output Low		60	130	ns	C _L = 15pF, Figures 3 and 5 (S1 closed)

Pin Function SP486

Pin 1 - DI_1 - Driver 1 Input - If driver 1 output is enabled, a logic 0 on DI_1 forces driver output DO_1A low and DO_1B high. A logic 1 on DI_1 with driver 1 output enabled forces driver DO_1A high and DO_1B low.

Pin 2 - DO_1A - Driver 1 output A.

Pin 3 - DO₁B - Driver 1 output B.

Pin 4 - EN - Driver Output Enable; Please refer to SP486 truth table (1).

Pin 5 - DO₂B - Driver 2 output B.

Pin 6 - DO₂A - Driver 2 output A.

Pin 7 - DI_2 - Driver 2 Input - If driver 2 output is enabled, a logic 0 on DI_2 forces driver output DO_2A low and DO_2B high. A logic 1 on DI_2 with driver 2 output enabled forces driver DO_2A high and DO_2B low.

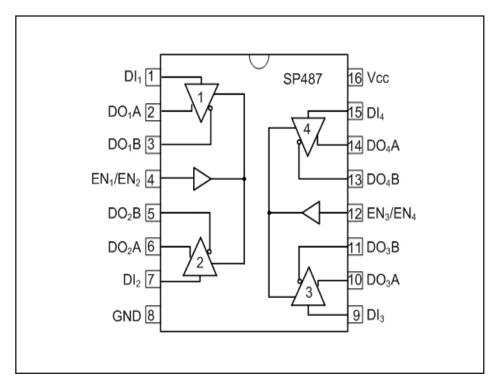
Pin 8 - GND - Ground.

Pin 9 - DI₃ - Driver 3 Input - If driver 3 output is enabled, a logic 0 on DI₁ forces driver output DO₃A low and DO₃B high. A logic 1 on DI₃ with driver 3 output enabled forces driver DO₃A high and DO₃B low.

Pin 10 - DO₃A - Driver 3 output A.

Pin 11 - DO_3B - Driver 3 output B.

Pin 12 - EN - Driver Output Disable; Please refer to SP486 truth table (1).


Pin 13 - DO_4B - Driver 4 output B.

Pin 14 - DO₄A - Driver 4 output A.

Pin 15 - DI₄ - Driver 4 Input - If driver 4 output is enabled, a logic 0 on DI₄ forces driver output DO₄A low and DO₄B high. A logic 1 on DI₄ with driver 4 output enabled forces driver DO₄A high and DO₄B low.

Pin 16 - Supply Voltage - $+4.75V \le Vcc \le +5.25V$.

SP487

Pin Function SP487

Pin 1 - DI₁ - Driver 1 Input - If driver 1 output is enabled, a logic 0 on DI₁ forces driver output DO₁A low and DO₁B high. A logic 1 on DI₁ with driver 1 output enabled forces driver DO₁A high and DO₁B low.

Pin 2 - DO₁A - Driver 1 output A.

Pin 3 - DO₁B - Driver 1 output B.

Pin 4 - EN_1/EN_2 - Driver 1 and 2 Output Enable; Please refer to SP487 truth table (2).

Pin 5 - DO₂B - Driver 2 output B.

Pin 6 - DO₂A - Driver 2 output A.

Pin 7 - DI_2 - Driver 2 Input - If driver 2 output is enabled, a logic 0 on DI_2 forces driver output DO_2A low and DO_2B high. A logic 1 on DI_2 with driver 2 output enabled forces driver DO_2A high and DO_2B low.

Pin 8 - GND - Ground.

Pin 9 - DI_3 - Driver 3 Input - If driver 3 output is enabled, a logic 0 on DI_1 forces driver output DO_3A low and DO_3B high. A logic 1 on DI_3 with driver 3 output enabled forces driver DO_3A high and DO_3B low.

Pin 10 - DO_3A - Driver 3 output A.

Pin 11 - DO₃B - Driver 3 output B.

Pin 12 - EN_3/EN_4 - Driver 3 and 4 Output Enable; Please refer to SP487 truth table (2).

Pin 13 - DO_4B - Driver 4 output B.

Pin 14 - DO_4A - Driver 4 output A.

Pin 15 - DI₄ - Driver 4 Input - If driver 4 output is enabled, a logic 0 on DI₄ forces driver output DO₄A low and DO₄B high. A logic 1 on DI₄ with driver 4 output enabled forces driver DO₄A high and DO₄B low.

Pin 16 - Supply Voltage - $+4.75V \le Vcc \le +5.25V$.

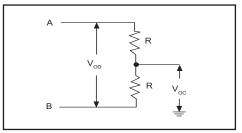


Figure 1. Driver DC Test Load

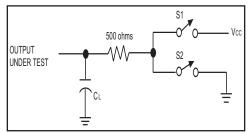


Figure 3. Driver Timing Test Load

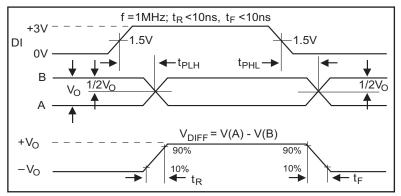


Figure 4. Driver Propagation Delays

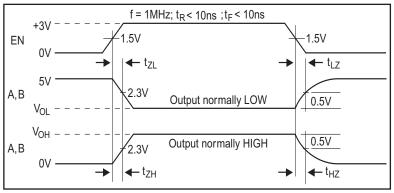


Figure 5. Driver Enable/Disable Timing

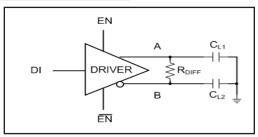
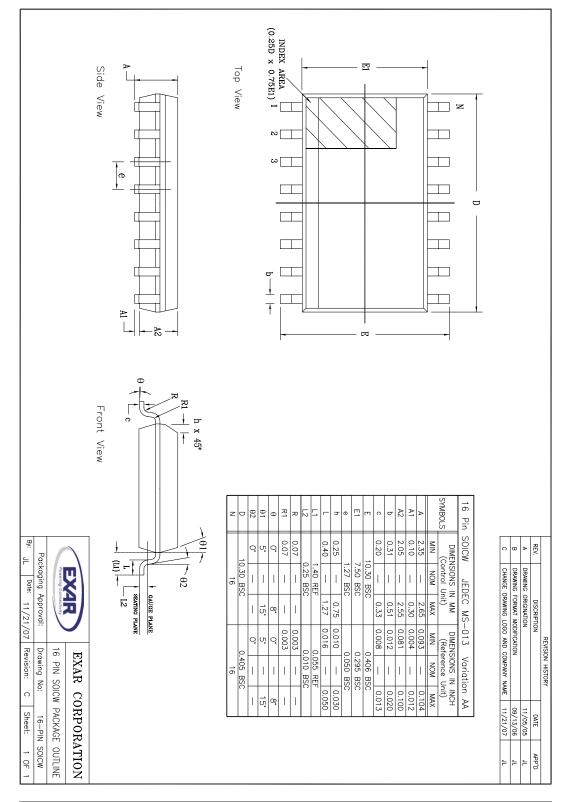


Figure 2. Driver Timing Test


The **SP486** and **SP487** are low power quad differential line drivers meeting RS-485 and RS-422 standards. The SP486 features active high and active low common driver enable controls; the SP487 provides independent, active high driver enable controls for each pair of drivers. The driver outputs are short-circuit limited to 200mA. Data rates up to 10Mbps are supported. The SP486 and SP487 are available in a 16-pin SOIC package.

INPUT	EN	ABLES	OUTPUTS		
DI	EN	EN	OUTA	OUTB	
Н	Н	Х	Н	L	
L	Н	Х	L	Н	
Н	Х	L	Н	L	
L	Х	L	L	Н	
Х	L	Н	Hi-Z	Hi-Z	

Table 1. SP486 Truth Table

INPUT	ENABLES	OUTPUTS		
DI	EN ₁ /EN ₂ or EN ₃ /EN ₄	OUTA	OUTB	
Н	Н	Н	L	
L	Н	L	Н	
Х	L	Hi-Z	Hi-Z	

Table 2. SP487 Truth Table

ORDERING INFORMATION				
Model	Temperature Range	Package Types		
SP486CT-L	0°C to +70°C			
SP486CT-L/TR	0°C to +70°C			
SP486ET-L	-40°C to +85°C			
SP486ET-L/TR	-40°C to +85°C			
SP487CT-L	0°C to +70°C			
SP487CT-L/TR	0°C to +70°C			
SP487ET-L	40°C to +85°C			
SP487ET-L/TR	-40°C to +85°C			

Note: /TR = Tape and Reel

REVISION HISTORY

DATE	REVISION	DESCRIPTION
June 2005		Legacy Sipex Datasheet
June 2011	1.0.0	Update ordering information per PDN 110510-01 and convert to Exar Format

Notice

EXAR Corporation reserves the right to make changes to any products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no representation that the circuits are free of patent infringement. Charts and schedules contained herein are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writting, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2011 EXAR Corporation

Datasheet June 2011

For technical support please email Exar's Serial Technical Support group at: serialtechsupport@exar.com

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.