

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

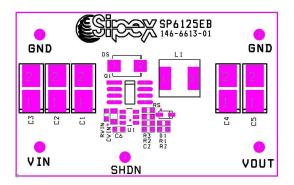
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

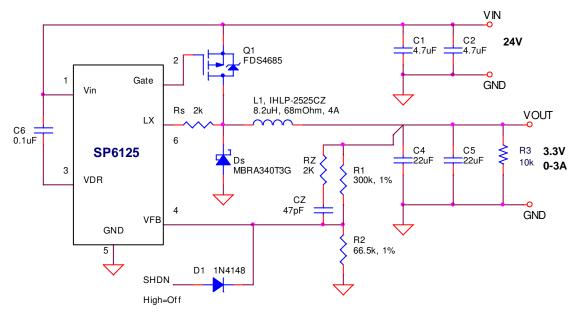
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





SP6125, 3A Evaluation Board Manual

- Easy Evaluation for the SP6125EK1 24V Input, 0 to 3A Output Non-Synchronous Buck Converter
- Precision 0.60V ±1% High -Accuracy Reference.
- Small form factor
- Feature Rich: Single supply operation, Overcurrent protection with auto-restart, on/off function, Preset internal soft start, Type-II internal compensation

SP6125EB SCHEMATIC

^{*} R(10k) is optional. It helps keep the output capacitor discharged under no-load condition.

USING THE EVALUATION BOARD

1) Powering Up the SP6125EB Circuit

Connect the SP6125 Evaluation Board to an external +24V power supply. Connect with short leads directly to the "VIN" and "GND" posts. Connect a Load between the "VOUT" and "GND" posts, again using short leads to minimize inductance and voltage drop.

2) Measuring Output Load Characteristics

It's best to GND reference scope and digital meters using the Star GND post near the output of the board. VOUT ripple can best be seen touching probe tip to the pad for COUT and scope GND collar touching Star GND post – avoid a GND lead on the scope which will increase noise pickup.

3) Using the Evaluation Board with Different Output Voltages

While the SP6125 Evaluation Board has been tested and delivered with the output set to 3.30V, by simply changing one resistor, R2, the SP6125 can be set to other output voltages. The relationship in the following formula is based on a voltage divider from the output to the feedback pin FB, which is set to an internal reference voltage of 0.60V. Standard 1% metal film resistors of surface mount size 0603 are recommended.

$$R2 = \frac{R1}{\left(\frac{Vout}{Vref} - 1\right)}$$

Where R1 = $300k\Omega$. For Vout = 0.60V setting, simply remove R2 from the board.

Note that since the SP6125 Evaluation Board design was optimized for 24V down conversion to 3.30V, changes of output voltage and/or input voltage will alter performance from the data given in the Power Supply Data section.

Using the SHDN (ON/OFF function)

Feedback pin serves a dual role of ON/OFF control. The MOSFET driver is disabled when a voltage greater than 1V is applied at FB pin. Maximum voltage rating of this pin is 5.5V. The controlling signal should be applied through a small signal diode as shown on page 1. Under no-load condition an optional 10kOhm bleeding resistor across the output helps keep the output capacitor discharged.

POWER SUPPLY DATA

The SP6125EB is designed with an accurate 2% reference over line, load and temperature. Figure 1 data shows a typical SP6125 Evaluation Board efficiency plot, with efficiencies to 82% and output currents to 3A. SP6125 Load Regulation in Figure 2 shows little change in output voltage from no load to 3A load. Figures 3 and 4 show the transient response and Overcurrent. Figures 5 and 6 show a controlled start-up with no load and 3A load when power is applied where the input current rises smoothly as the soft-start ramp increases. Figures 7 and 8 show the output ripple under no load and 3A load.

Typical Performance Characteristics

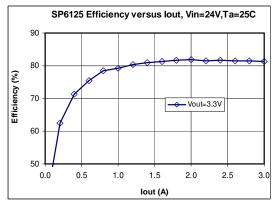


Figure 1- Efficiency, natural convection

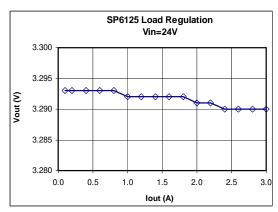


Figure 2- Load regulation

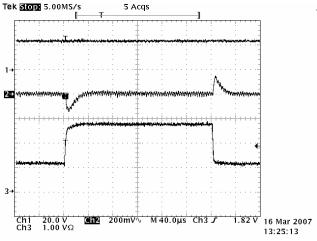


Figure 3- Step load 1.2-2.8A, ch1: Vin ch2: Vout, ch3: lout

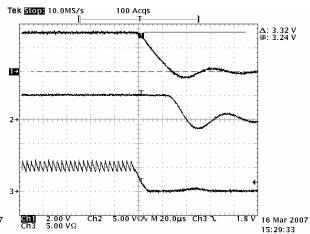


Figure 4- Overcurrent test, ch1: Vout ch2: lout, ch3: inductor current

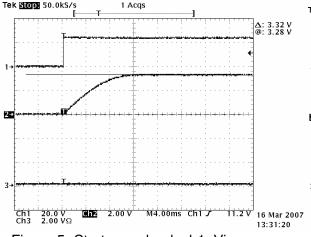


Figure 5- Startup no load, ch1: Vin ch2: Vout, ch3: lout

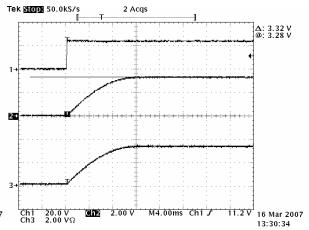


Figure 6- Start up 3A, ch1: Vin ch2: Vout, ch3: lout

Typical Performance Characteristics

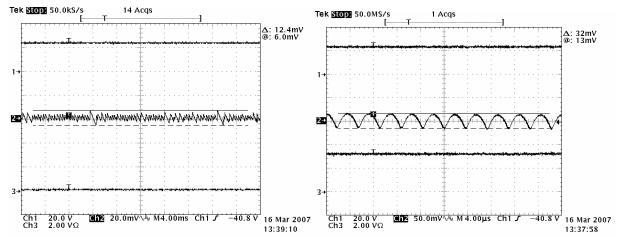


Figure 7- Output ripple at 0A is 12mV, ch1: Vin, ch2: Vout, ch3: lout

Figure 8- Output ripple at 3A is 32mV, ch1: Vin, ch2: Vout, ch3: lout

LOOP COMPENSATION

The SP6125 includes Type-II internal compensation components for loop compensation. External compensation components are not required for systems with tantalum or aluminum electrolytic output capacitors with sufficiently high ESR. Use the condition below as a guideline to determine whether or not the internal compensation is sufficient for your design.

Type-II internal compensation is sufficient if the following condition is met:

$$f_{ESRZERO} < f_{DBPOLE}$$
(1)

where:

$$f_{ESRZERO} = \frac{1}{2.\pi . R_{ESR} . C_{OUT}}$$
(2)

$$f_{DBPOLE} = \frac{1}{2.\pi.\sqrt{L \cdot C_{OUT}}}$$
 (3)

Creating a Type-III compensation Network

The above condition requires the ESR zero to be at a lower frequency than the double-pole from the LC filter. If this condition is not met, Type-III compensation should be used and can be accomplished by placing a series RC combination in parallel with R1 as shown below. The value of CZ can be calculated as follows and RZ selected from table 1.

$$CZ = \frac{\sqrt{L \cdot C}}{1.3 \times R1} \dots (4)$$

f _{ESRZERO} /f _{DBPOLE}	RZ
1X	50K
2X	40K
3X	30K
5X	10K
>= 10X	2K

Table1- Selection of RZ

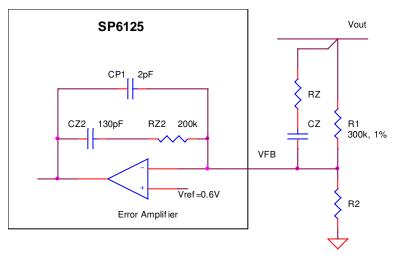


Figure 9- RZ and CZ in conjunction with internal compensation components form a Type-III compensation

Loop Compensation for the SP6125EB

L = 8.2uH, C = 2x22uF/5mOhm ceramic capacitor

From equation (2) $f_{ESRZERO} = 1.45MHz$. From equation (3) $f_{DBPOLE} = 8.4$ kHz. Since the condition specified in (1) is not met, Type-III compensation has to be used by adding external components RZ and CZ. Using equation (4) CZ is calculated 48.7pF (use 47pF). Following the guideline given in table 1, a $2k\Omega$ RZ was used.

PCB LAYOUT DRAWINGS

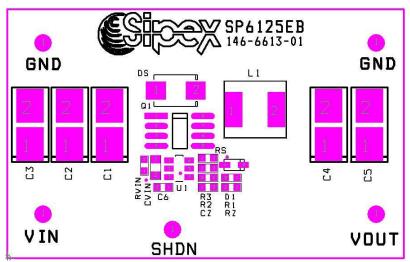


Figure 10. SP6125EB Component Placement

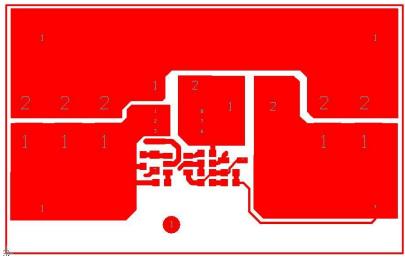


Figure 11. SP6125EB PCB Layout Top Side

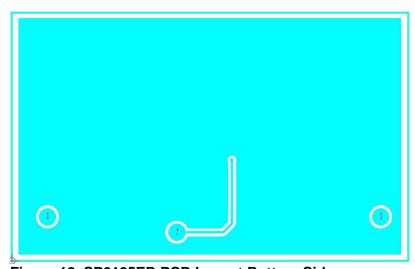


Figure 12. SP6125EB PCB Layout Bottom Side

Line	Ref.	Qty.	Manuf.	Manuf.	Layout	Component	Vendor
No.	Des.	•		Part Number	Size	·	Phone Number
1	PCB	1	Sipex	146-6613-01	1.175"x1.934"	SP6125EB	408-934-7500
2	U1	1	Sipex	SP6125EK1	TSOT-6	Non-synchronous Buck Controller	408-934-7500
3	Q1	1	FAIRCHILD	FDS4685	SO8	PFET, 40V, 35mOhm	402-563-6866
4	DS	1	On Semi	MBRA340T3	SMA	Schotkky, 40V, 3A	602-244-6600
5	L1	1	Vishay	IHLP2525CZ	6.86x6.47mm	8.2uH Coil 7.5A 68mOhm	914-347-2474
6	D1	1	MCC	1N4148WX	SOD323	Fast Switching Diode 500mW	818-701-4933
7	C1, C2	2	MURATA	GRM32ER71H475K	1210	4.7 uF Ceramic X5R 50V	770-436-1300
8	C4, C5	2	MURATA	GRM31CR61C226M	1206	22uF Ceramic X5R 16V	770-436-1300
9	C6	1	MURATA	GRM18ER61E104K	0603	0.1uF Ceramic X5R 25V	770-436-1300
10	CZ	1	MURATA	GRM18ER61H470K	0603	47pF Ceramic C0G 50V	770-436-1300
11	CVIN		Not Populated				
12	R1	1	VISHAY/DALE	CRCW0603300K	0603	300K	402-563-6866
13	R2	1	VISHAY/DALE	CRCW060366K5	0603	66.5K	402-563-6866
14	RZ, Rs	2	VISHAY/DALE	CRCW06032K0	0603	2.0K	402-563-6866
15	R3		Not Populated				
16	RVIN	1	VISHAY/DALE	CRCW06030000Z0	0603	0 Ohm	402-563-6866
17	R	1	VISHAY/DALE	CRCW060310K0	0603	10.0K	402-563-6866
	VIN, VOUT, GND,						•
18	GND, SHDN	5	Vector Electronic	K24C/M	.042 Dia	Test Point Post	800-344-4539

Table 2- SP6125EB List of Materials

INDUCTORS - SURFACE MOUNT								
Inductance	Inductor Specification							
(uH)	Manufacturer/Part No.	DOR Isat Size		Inductor Type		Manufacturer		
` ′		mOhms	(A)	LxW(mm))		Website
8.2	VISHAY	68.0	7.50	6.47x6.86	3.00	0 Shielded		www.vishay.com
		CAI	PACITORS - SUI	RFACE MOU	INT			
Capacitanas/								
Capacitance(Manufacturer/Part No.	ESR	Ripple Current	Size		Voltage	Capacitor	Manufacturer
uF)		ohms (max)	(A) 45C Delta	LxW(mm)	Ht.(mm)	(V)	Туре	Website
4.7	MURATA GRM32ER71H475K	0.005	3.20	3.20x2.50	2.50	50.0	X5R Ceramic	www.murata.com
22	MURATA GRIVI31CR61C226M	0.005	280	3.20x1.60	1.60	16.0	X5R Ceramic	www.murata.com
MOSFETS - SURFACE MOUNT								
	MOSFET Specification							
MOSFET	Manufacturer/Part No.	RDS(on)	ID Current	Q	!	Voltage	Foot Print	Manufacturer
		mohms (max)	(A)	nC (Typ)	nC (Max)	(V)		Website
P-Ch	FAIRCHILD FD\$4685	35	8.2	19.0	27.0	40.0	SO8	www.fairchildsemi.com

Table 3- SP6125EB Suggested Components and Vendor Lists

ORDERING INFORMATION

Model	Temperature Range	Package Type
SP6125EB	40°C to +125°C	SP6125 Evaluation Board
SP6125EK1	– 40°C to +125°C	6-pin TSOT-6