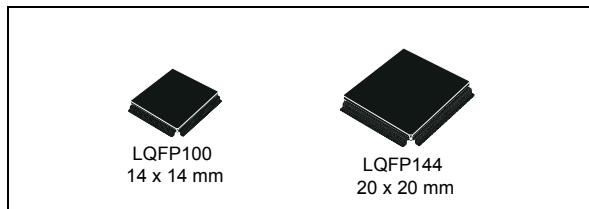


Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

32-bit Power Architecture® based MCU with 1088KB Flash memory and 80KB RAM for automotive chassis and safety applications

Datasheet - production data

Features

- AEC-Q10x qualified
- 64 MHz, single issue, 32-bit CPU core complex (e200z0h)
 - Compliant with Power Architecture® embedded category
 - Variable Length Encoding (VLE)
- Memory organization
 - Up to 1024 KB on-chip code Flash memory with additional 64 KB for EEPROM emulation (data flash), with ECC, with erase/program controller
 - Up to 80 KB on-chip SRAM with ECC
- Fail safe protection
 - ECC protection on system SRAM and Flash
 - Safety port
 - SWT with servicing sequence pseudo-random generator
 - Power management
 - Non-maskable interrupt for both cores
 - Fault collection and control unit (FCCU)
 - Safe mode of system-on-chip (SoC)
 - Register protection scheme
- Nexus® L2+ interface
- Single 3.3 V or 5 V supply for I/Os and ADC
- 2 on-platform peripherals set with 2 INTC
- 16-channel eDMA controller with multiple transfer request sources

- General purpose I/Os (80 GPIO + 26 GPI on LQFP144; 49 GPIO + 16 GPI on LQFP100)
- 2 general purpose eTimer units
 - 6 timers, each with up/down count capabilities
 - 16-bit resolution, cascadable counters
 - Quadrature decode with rotation direction flag
 - Double buffer input capture and output compare
- Communications interfaces
 - 2 LINFlex modules (LIN 2.1, 1 × Master/Slave, 1 × Master Only)
 - 5 DSPI modules with automatic chip select generation
 - 2 FlexCAN interfaces (2.0B Active) with 32 message buffers
 - 1 Safety port based on FlexCAN; usable as third CAN when not used as safety port
 - 1 FlexRay™ module (V2.1) with dual or single channel, 64 message buffers and up to 10 Mbit/s
- 2 CRC units with three contexts and 3 hardwired polynomials(CRC8,CRC32 and CRC-16-CCITT)
- 10-bit A/D converter
 - 27 input channels and pre-sampling feature
 - Conversion time < 1 µs including sampling time at full precision
 - Programmable cross triggering unit (CTU)
 - 4 analog watchdog with interrupt capability
- On-chip CAN/UART Bootstrap loader with boot assist module (BAM)
- Ambient temperature ranges: -40 to 125 °C or -40 to 105 °C

Table 1. Device summary

Package	Part number	
	768 KB Flash	1 MB Flash
LQFP144	SPC560P54L5 SPC56AP54L5	SPC560P60L5 SPC56AP60L5
LQFP100	SPC560P54L3 SPC56AP54L3	SPC560P60L3 SPC56AP60L3

Contents

1	Introduction	8
1.1	Document overview	8
1.2	Description	8
1.3	Device comparison	8
1.4	Block diagram	10
1.5	Feature details	14
1.5.1	High performance e200z0h core processor	14
1.5.2	Crossbar switch (XBAR)	14
1.5.3	Enhanced direct memory access (eDMA)	15
1.5.4	On-chip flash memory with ECC	15
1.5.5	On-chip SRAM with ECC	16
1.5.6	Interrupt controller (INTC)	16
1.5.7	System clocks and clock generation	17
1.5.8	Frequency modulated phase-locked loop (FMPLL)	17
1.5.9	Main oscillator	18
1.5.10	Internal RC oscillator	18
1.5.11	Periodic interrupt timer (PIT)	18
1.5.12	System timer module (STM)	18
1.5.13	Software watchdog timer (SWT)	19
1.5.14	Fault collection and control unit (FCCU)	19
1.5.15	System integration unit (SIUL)	19
1.5.16	Boot and censorship	19
1.5.17	Error correction status module (ECSM)	20
1.5.18	FlexCAN	20
1.5.19	Safety port (FlexCAN)	21
1.5.20	FlexRay	21
1.5.21	Serial communication interface module (LINFlex)	22
1.5.22	Deserial serial peripheral interface (DSPI)	22
1.5.23	eTimer	23
1.5.24	Analog-to-digital converter (ADC)	24
1.5.25	Cross triggering unit (CTU)	24
1.5.26	Cyclic redundancy check (CRC)	25
1.5.27	Nexus development interface (NDI)	25
1.5.28	IEEE 1149.1 (JTAG) controller	26

1.5.29	On-chip voltage regulator (VREG)	26
2	Package pinouts and signal descriptions	27
2.1	Package pinouts	27
2.2	Pin descriptions	29
2.2.1	Power supply and reference voltage pins	29
2.2.2	System pins	31
2.2.3	Pin muxing	33
3	Electrical characteristics	48
3.1	Introduction	48
3.2	Parameter classification	48
3.3	Absolute maximum ratings	49
3.4	Recommended operating conditions	51
3.5	Thermal characteristics	55
3.5.1	General notes for specifications at maximum junction temperature	56
3.6	Electromagnetic interference (EMI) characteristics	58
3.7	Electrostatic discharge (ESD) characteristics	58
3.8	Power management electrical characteristics	58
3.8.1	Voltage regulator electrical characteristics	58
3.8.2	Voltage monitor electrical characteristics	60
3.9	Power Up/Down sequencing	61
3.10	NVUSRO register	63
3.10.1	NVUSRO[PAD3V5V] field description	63
3.11	DC electrical characteristics	64
3.11.1	DC electrical characteristics (5 V)	64
3.11.2	DC electrical characteristics (3.3 V)	67
3.11.3	I/O pad current specification	71
3.12	Main oscillator electrical characteristics	72
3.13	FMPPLL electrical characteristics	73
3.14	16 MHz RC oscillator electrical characteristics	74
3.15	Analog-to-Digital converter (ADC) electrical characteristics	74
3.15.1	Input impedance and ADC accuracy	75
3.15.2	ADC conversion characteristics	80
3.16	Flash memory electrical characteristics	81

3.17	AC specifications	83
3.17.1	Pad AC specifications	83
3.18	AC timing characteristics	83
3.18.1	RESET pin characteristics	83
3.18.2	IEEE 1149.1 interface timing	86
3.18.3	Nexus timing	88
3.18.4	External interrupt timing (IRQ pin)	90
3.18.5	DSPI timing	91
4	Package characteristics	97
4.1	ECOPACK®	97
4.2	Package mechanical data	97
4.2.1	LQFP144 mechanical outline drawing	97
4.2.2	LQFP100 mechanical outline drawing	99
5	Ordering information	101
6	Revision history	102

List of tables

Table 1.	Device summary	2
Table 2.	SPC56xP54x/SPC56xP60x device comparison	8
Table 3.	SPC56xP54x/SPC56xP60x device configuration difference	10
Table 4.	SPC56xP54x/SPC56xP60x series block summary	12
Table 5.	Supply pins	29
Table 6.	System pins	31
Table 7.	Pin muxing	33
Table 8.	Parameter classifications	48
Table 9.	Absolute maximum ratings	49
Table 10.	Recommended operating conditions (5.0 V)	51
Table 11.	Recommended operating conditions (3.3 V)	52
Table 12.	Thermal characteristics for 144-pin LQFP	55
Table 13.	Thermal characteristics for 100-pin LQFP	56
Table 14.	EMI testing specifications	58
Table 15.	ESD ratings	58
Table 16.	Approved NPN ballast components	59
Table 17.	Voltage regulator electrical characteristics	60
Table 18.	Low voltage monitor electrical characteristics	61
Table 19.	PAD3V5V field description	63
Table 20.	DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0)	64
Table 21.	Supply current (5.0 V, NVUSRO[PAD3V5V]=0)	66
Table 22.	DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1)	67
Table 23.	Supply current (3.3 V, NVUSRO[PAD3V5V]=1)	69
Table 24.	Peripherals supply current (5 V and 3.3 V)	70
Table 25.	I/O supply segment	71
Table 26.	I/O consumption	71
Table 27.	Main oscillator electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0)	72
Table 28.	Main oscillator electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1)	72
Table 29.	Input clock characteristics	73
Table 30.	PLLMRFM electrical specifications ($V_{DDPLL} = 1.08$ V to 1.32 V, $V_{SS} = V_{SSPLL} = 0$ V, $TA = TL$ to TH)	73
Table 31.	16 MHz RC oscillator electrical characteristics	74
Table 32.	ADC conversion characteristics	80
Table 33.	Program and erase specifications	81
Table 34.	Flash memory module life	82
Table 35.	Flash read access timing	82
Table 36.	Output pin transition times	83
Table 37.	RESET electrical characteristics	85
Table 38.	JTAG pin AC electrical characteristics	86
Table 39.	Nexus debug port timing	88
Table 40.	External interrupt timing	90
Table 41.	DSPI timing	91
Table 42.	LQFP144 mechanical data	98
Table 43.	LQFP100 mechanical data	99
Table 44.	Document revision history	102

List of figures

Figure 1.	SPC56xP54x/SPC56xP60x block diagram	11
Figure 2.	LQFP176 pinout (top view)	27
Figure 3.	LQFP144 pinout (top view)	28
Figure 4.	LQFP100 pinout (top view)	29
Figure 5.	Power supplies constraints	50
Figure 6.	Independent ADC supply	51
Figure 7.	Power supplies constraints	54
Figure 8.	Independent ADC supply	55
Figure 9.	Voltage regulator configuration	59
Figure 10.	Power-up typical sequence	62
Figure 11.	Power-down typical sequence	62
Figure 12.	Brown-out typical sequence	63
Figure 13.	I/O input DC electrical characteristics definition	64
Figure 14.	I/O input DC electrical characteristics definition	67
Figure 15.	ADC characteristics and error definitions	75
Figure 16.	Input equivalent circuit (precise channels)	76
Figure 17.	Input equivalent circuit (extended channels)	77
Figure 18.	Transient behavior during sampling phase	77
Figure 19.	Spectral representation of input signal	79
Figure 20.	Start-up reset requirements	84
Figure 21.	Noise filtering on reset signal	84
Figure 22.	JTAG test clock input timing	86
Figure 23.	JTAG test access port timing	87
Figure 24.	JTAG boundary scan timing	88
Figure 25.	Nexus output timing	89
Figure 26.	Nexus event trigger and test clock timings	89
Figure 27.	Nexus TDI, TMS, TDO timing	90
Figure 28.	External interrupt timing	91
Figure 29.	DSPI classic SPI timing — master, CPHA = 0	92
Figure 30.	DSPI classic SPI timing — master, CPHA = 1	93
Figure 31.	DSPI classic SPI timing — slave, CPHA = 0	93
Figure 32.	DSPI classic SPI timing — slave, CPHA = 1	94
Figure 33.	DSPI modified transfer format timing — master, CPHA = 0	94
Figure 34.	DSPI modified transfer format timing — master, CPHA = 1	95
Figure 35.	DSPI modified transfer format timing — slave, CPHA = 0	95
Figure 36.	DSPI modified transfer format timing — slave, CPHA = 1	96
Figure 37.	DSPI PCS strobe (PCSS) timing	96
Figure 38.	LQFP144 package mechanical drawing	97
Figure 39.	LQFP100 package mechanical drawing	99
Figure 40.	Ordering information scheme	101

1 Introduction

1.1 Document overview

This document provides electrical specifications, pin assignments, and package diagrams for the SPC56xP54x/SPC56xP60x series of microcontroller units (MCUs). It also describes the device features and highlights important electrical and physical characteristics. For functional characteristics, refer to the device reference manual.

1.2 Description

This 32-bit system-on-chip (SoC) automotive microcontroller family is the latest achievement in integrated automotive application controllers. It belongs to an expanding range of automotive-focused products designed to address chassis applications specifically the airbag application.

This family is one of a series of next-generation integrated automotive microcontrollers based on the Power Architecture technology.

The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture embedded category. It operates up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

1.3 Device comparison

Table 2 provides a summary of different members of the SPC56xP54x/SPC56xP60x family and their features—relative to Full-featured version—to enable a comparison among the family members and an understanding of the range of functionality offered within this family.

Table 2. SPC56xP54x/SPC56xP60x device comparison

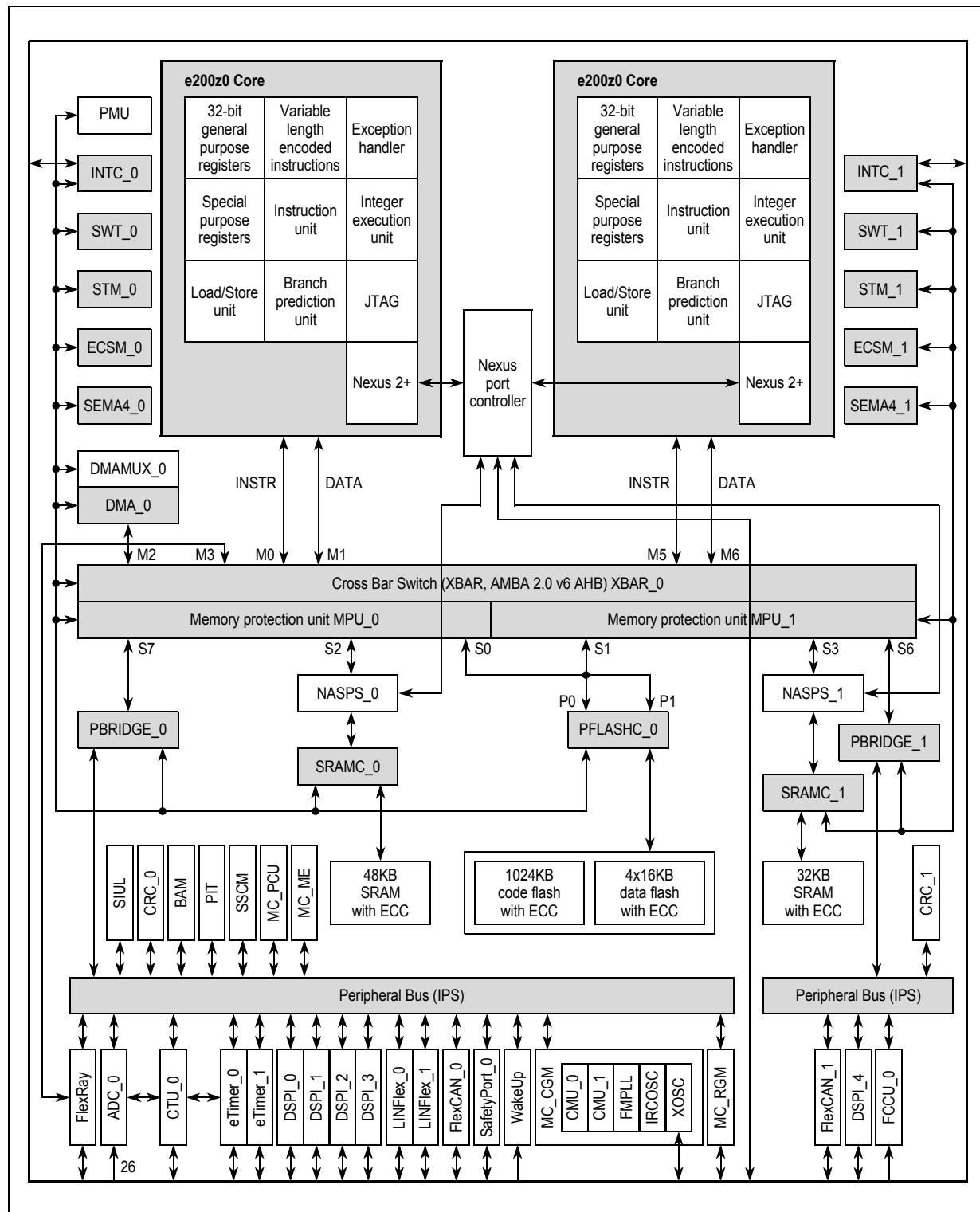
Feature	SPC560P54	SPC560P60	SPC56AP54	SPC56AP60		
Code Flash memory (with ECC)	768 KB	1 MB	768 KB	1 MB		
Data Flash / EE (with ECC)	64 KB					
SRAM (with ECC)	64 KB	80 KB	64 KB	80 KB		
Processor core	32-bit e200z0h		32-bit Dual e200z0h			
Instruction set	VLE					
CPU performance	0-64 MHz					
FMPPLL (frequency-modulated phase-locked loop) modules	1					
INTC (interrupt controller) channels	148					
PIT (periodic interrupt timer)	1 (includes four 32-bit timers)					

Table 2. SPC56xP54x/SPC56xP60x device comparison (continued)

Feature	SPC560P54	SPC560P60	SPC56AP54	SPC56AP60
Enhanced DMA (direct memory access) channels		16		
FlexRay		Yes (64 message buffer)		
FlexCAN (controller area network)		3 ^{(1),(2)}		
Safety port		Yes (via third FlexCAN module)		
FCCU (fault collection and control unit)		Yes ⁽³⁾		
CTU (cross triggering unit)		Yes		
eTimer channels		2 × 6		
FlexPWM (pulse-width modulation) channels		No		
Analog-to-digital converters (ADC)		One (10-bit, 27-channel) ⁽⁴⁾		
LINFlex modules		2 (1 × Master/Slave, 1 × Master only) ⁽⁵⁾		
DSPI (deserial serial peripheral interface) modules		5 ⁽⁶⁾		
CRC (cyclic redundancy check) units		2 ⁽⁷⁾		
JTAG interface		Yes		
Nexus port controller (NPC)		Yes (Level 2+) ⁽⁸⁾		
Supply	Digital power supply ⁽⁹⁾	3.3 V or 5 V single supply with external transistor		
	Analog power supply	3.3 V or 5 V		
	Internal RC oscillator	16 MHz		
	External crystal oscillator	4–40 MHz		
Packages		LQFP100 LQFP144	LQFP100 LQFP144 LQFP176 ⁽¹⁰⁾	
Temperature	Standard ambient temperature	–40 to 125 °C		

1. Each FlexCAN module has 32 message buffers.
2. One FlexCAN module can act as a Safety Port with a bit rate as high as 7.5 Mbit/s.
3. Enhanced FCCU version.
4. Same amount of ADC channels as on SPC560P44/50 not considering the internally connected ones. 26 channels on LQFP144 and 16 channels on LQFP100.
5. LinFlex_1 is Master Only.
6. Increased number of CS for DSPI_1.
7. Upgraded specification with addition of 8-bits polynomial (CRC-8 VDA CAN) support and 3rd context.
8. Improved debugging capability with data trace capability and increased Nexus throughput available on emulation package.
9. 3.3 V range and 5 V range correspond to different orderable parts.
10. Software development package only. Not available for production.

SPC56xP54x/SPC56xP60x is present on the market in two different options enabling different features: Full-featured, and Airbag configuration. [Table 3](#) shows the main differences between the two versions.


Table 3. SPC56xP54x/SPC56xP60x device configuration difference

Feature	Enhanced Full-featured	Full-featured	Airbag
FlexCAN (controller area network)	3	2	2
CTU (cross triggering unit)	Yes		No
FlexRay	Yes (64 message buffer)		No
DSPI (deserial serial peripheral interface) modules	5		4
CRC (cyclic redundancy check) unit	2		1

1.4 Block diagram

[Figure 1](#) shows a top-level block diagram of the SPC56xP54x/SPC56xP60x MCU. [Table 4](#) summarizes the functions of the blocks.

Figure 1. SPC56xP54x/SPC56xP60x block diagram

Table 4. SPC56xP54x/SPC56xP60x series block summary

Block	Function
Analog-to-digital converter (ADC)	Multi-channel, 10-bit analog-to-digital converter
Boot assist module (BAM)	Block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks
Controller area network (FlexCAN)	Supports the standard CAN communications protocol
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Crossbar switch (XBAR)	Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 32-bit data bus width.
Cyclic redundancy checker (CRC) unit	Is dedicated to the computation of CRC off-loading the CPU. Each context has a separate CRC computation engine in order to allow the concurrent computation of the CRC of multiple data streams.
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Enhanced direct memory access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via “n” programmable channels
Enhanced timer (eTimer)	Provides enhanced programmable up/down modulo counting
Error correction status module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
External oscillator (XOSC)	Provides an output clock used as input reference for FMPLL_0 or as reference clock for specific modules depending on system needs
Fault collection and control unit (FCCU)	Provides functional safety to the device
Flash memory	Provides non-volatile storage for program code, constants and variables
FlexRay (FlexRay communication controller)	Provides high-speed distributed control for advanced automotive applications
Frequency-modulated phase-locked loop (FMPLL)	Generates high-speed system clocks and supports programmable frequency modulation
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests
JTAG controller	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode
LINFlex controller	Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications

Table 4. SPC56xP54x/SPC56xP60x series block summary (continued)

Block	Function
Peripheral bridge (PBRIDGE)	Is the interface between the system bus and on-chip peripherals
Periodic interrupt timer (PIT)	Produces periodic interrupts and triggers
Power control unit (MC_PCU)	Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called “power domains” which are controlled by the PCU
Reset generation module (MC_RGM)	Centralizes reset sources and manages the device reset sequence of the device
Semaphore unit (SEMA4)	Provides the hardware support needed in multi-core systems for implementing semaphores and provide a simple mechanism to achieve lock/unlock operations via a single write access
Static random-access memory (SRAM)	Provides storage for program code, constants, and variables
System integration unit lite (SIUL)	Provides control over all the electrical pad controls and up 32 ports with 16 bits of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration
System status and configuration module (SSCM)	Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable
System timer module (STM)	Provides a set of output compare events to support AUTOSAR ⁽¹⁾ and operating system tasks
System watchdog timer (SWT)	Provides protection from runaway code
Wakeup unit (WKPU)	Supports up to 18 external sources that can generate interrupts or wakeup events, of which 1 can cause non-maskable interrupt requests or wakeup events.

1. AUTOSAR: AUTomotive Open System ARchitecture (see autosar.org web site).

1.5 Feature details

1.5.1 High performance e200z0h core processor

The e200z0h Power Architecture core provides the following features:

- High performance e200z0 core processor for managing peripherals and interrupts
- Single issue 4-stage pipeline in-order execution 32-bit Power Architecture CPU
- Harvard architecture
- Variable length encoding (VLE), allowing mixed 16-bit and 32-bit instructions
 - Results in smaller code size footprint
 - Minimizes impact on performance
- Branch processing acceleration using lookahead instruction buffer
- Load/store unit
 - 1-cycle load latency
 - Misaligned access support
 - No load-to-use pipeline bubbles
- Thirty-two 32-bit general purpose registers (GPRs)
- Separate instruction bus and load/store bus Harvard architecture
- Hardware vectored interrupt support
- Reservation instructions for implementing read-modify-write constructs
- Long cycle time instructions, except for guarded loads, do not increase interrupt latency
- Extensive system development support through Nexus debug port
- Non maskable Interrupt support

1.5.2 Crossbar switch (XBAR)

The XBAR multi-port crossbar switch supports simultaneous connections between six master ports and six slave ports. The crossbar supports a 32-bit address bus width and a 32-bit data bus width.

The crossbar allows for two concurrent transactions to occur from any master port to any slave port; but one of those transfers must be an instruction fetch from internal flash memory. If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher priority master and grant it ownership of the slave port. All other masters requesting that slave port are stalled until the higher priority master completes its transactions. Requesting masters are treated with equal priority and will be granted access to a slave port in round-robin fashion, based upon the ID of the last master to be granted access.

The crossbar provides the following features:

- 6 master ports:
 - 2 e200z0 core complex Instruction ports
 - 2 e200z0 core complex Load/Store Data ports
 - eDMA
 - FlexRay
- 6 slave ports:
 - 2 Flash memory (code flash and data flash)
 - 2 SRAM (48 KB + 32 KB)
 - 2 PBRIDGE
- 32-bit internal address, 32-bit internal data paths
- Fixed Priority Arbitration based on Port Master
- Temporary dynamic priority elevation of masters

1.5.3

Enhanced direct memory access (eDMA)

The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data movements via 16 programmable channels, with minimal intervention from the host processor. The hardware micro architecture includes a DMA engine which performs source and destination address calculations, and the actual data movement operations, along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels. This implementation is utilized to minimize the overall block size.

The eDMA module provides the following features:

- 16 channels support independent 8, 16 or 32-bit single value or block transfers
- Supports variable sized queues and circular queues
- Source and destination address registers are independently configured to post-increment or remain constant
- Each transfer is initiated by a peripheral, CPU, or eDMA channel request
- Each eDMA channel can optionally send an interrupt request to the CPU on completion of a single value or block transfer
- DMA transfers possible between system memories, DSPIs, ADC, eTimer and CTU
- Programmable DMA Channel Multiplexer for assignment of any DMA source to any available DMA channel with up to 30 potential request sources
- eDMA abort operation through software

1.5.4

On-chip flash memory with ECC

The SPC56xP54x/SPC56xP60x provides up to 1024 KB of programmable, non-volatile, flash memory. The non-volatile memory (NVM) can be used for instruction and/or data storage. The flash memory module interfaces the system bus to a dedicated flash memory array controller. It supports a 32-bit data bus width at the system bus port, and a 128-bit read data interface to flash memory. The module contains a four-entry, 4x128-bit prefetch buffers. Prefetch buffer hits allow no-wait responses. Normal flash memory array accesses are registered and are forwarded to the system bus on the following cycle, incurring 2 wait states.

The flash memory module provides the following features:

- Up to 1024 KB flash memory
 - 14 blocks (2×16 KB + 2×32 KB + 2×16 KB + 2×64 KB + 6×128 KB) code flash
 - 4 blocks (16 KB + 16 KB + 16 KB + 16 KB) data flash
 - Full Read While Write (RWW) capability between code and data flash
- Four 128-bit wide prefetch buffers to provide single cycle in-line accesses (prefetch buffers can be configured to prefetch code or data or both)
- Typical flash memory access time: 0 wait states for buffer hits, 2 wait states for page buffer miss at 64 MHz
- Hardware managed flash memory writes handled by 32-bit RISC Krypton engine
- Hardware and software configurable read and write access protections on a per-master basis.
- Configurable access timing allowing use in a wide range of system frequencies.
- Multiple-mapping support and mapping-based block access timing (0–31 additional cycles) allowing use for emulation of other memory types.
- Software programmable block program/erase restriction control.
- Erase of selected block(s)
- Read page size of 128 bits (4 words)
- 64-bit ECC with single-bit correction, double-bit detection for data integrity
- Embedded hardware program and erase algorithm
- Erase suspend, program suspend and erase-suspended program
- Censorship protection scheme to prevent flash memory content visibility
- Hardware support for EEPROM emulation

1.5.5 On-chip SRAM with ECC

The SPC56xP54x/SPC56xP60x SRAM module provides a general-purpose memory of up to 80 KB.

The SRAM module provides the following features:

- Supports read/write accesses mapped to the SRAM memory from any master
- Up to 80 KB general purpose RAM
 - 2 blocks (48 KB + 32 KB)
- Supports byte (8-bit), half word (16-bit), and word (32-bit) writes for optimal use of memory
- Typical SRAM access time: 0 wait state for reads and 32-bit writes; 1 wait state for 8- and 16-bit writes if back to back with a read to same memory block

1.5.6 Interrupt controller (INTC)

The INTC (interrupt controller) provides priority-based preemptive scheduling of interrupt requests, suitable for statically scheduled hard real-time systems.

For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt request source for quick determination of which ISR needs to be executed. It also provides an ample number of priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To

allow the appropriate priorities for each source of interrupt request, the priority of each interrupt request is software configurable.

When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority ceiling protocol for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that all tasks which share the resource can not preempt each other.

The INTC provides the following features:

- Unique 9-bit vector for each separate interrupt source
- 8 software triggerable interrupt sources
- 16 priority levels with fixed hardware arbitration within priority levels for each interrupt source
- Ability to modify the ISR or task priority.
 - Modifying the priority can be used to implement the Priority Ceiling Protocol for accessing shared resources.
- 2 external high priority interrupts directly accessing the main core and IOP critical interrupt mechanism

The INTC module is replicated for each processor.

1.5.7 System clocks and clock generation

The following list summarizes the system clock and clock generation on the SPC56xP54x/SPC56xP60x:

- Lock detect circuitry continuously monitors lock status
- Loss of clock (LOC) detection for PLL outputs
- Programmable output clock divider ($\div 1, \div 2, \div 4, \div 8$)
- Programmable output clock divider ($\div 1, \div 2, \div 3$ to $\div 256$)
- eTimer module running at the same frequency as the e200z0h core
- On-chip oscillator with automatic level control
- Internal 16 MHz RC oscillator for rapid start-up and safe mode
 - Supports frequency trimming by user application

1.5.8 Frequency modulated phase-locked loop (FMPLL)

The FMPLL allows the user to generate high speed system clocks from a 4 MHz to 40 MHz input clock. Further, the FMPLL supports programmable frequency modulation of the system clock. The FMPLL multiplication factor, output clock divider ratio are all software configurable.

The FMPLL has the following major features:

- Input clock frequency from 4 MHz to 40 MHz
- Voltage controlled oscillator (VCO) range from 256 MHz to 512 MHz
- Reduced frequency divider (RFD) for reduced frequency operation without forcing the PLL to relock
- Modulation enabled/disabled through software

- Triangle wave modulation
- Programmable modulation depth ($\pm 0.25\%$ to $\pm 4\%$ deviation from center frequency)
 - Programmable modulation frequency dependent on reference frequency
- Self-clocked mode (SCM) operation

1.5.9 Main oscillator

The main oscillator provides these features:

- Input frequency range 4 MHz to 40 MHz
- Crystal input mode or Oscillator input mode
- PLL reference

1.5.10 Internal RC oscillator

This device has an RC ladder phase-shift oscillator. The architecture uses constant current charging of a capacitor. The voltage at the capacitor is compared by the stable bandgap reference voltage.

The RC Oscillator provides these features:

- Nominal frequency 16 MHz
- $\pm 6\%$ variation over voltage and temperature after process trim
- Clock output of the RC oscillator serves as system clock source in case loss of lock or loss of clock is detected by the PLL
- RC oscillator is used as the default system clock during startup

1.5.11 Periodic interrupt timer (PIT)

The PIT module implements these features:

- Up to four general purpose interrupt timers
- 32-bit counter resolution
- Clocked by system clock frequency
- Each channel can be used as trigger for a DMA request

1.5.12 System timer module (STM)

The STM module implements these features:

- 32-bit up counter with 8-bit prescaler
- Four 32-bit compare channels
- Independent interrupt source for each channel
- Counter can be stopped in debug mode

The STM module is replicated for each processor.

1.5.13 Software watchdog timer (SWT)

The SWT has the following features:

- Fault tolerant output
- Safe internal RC oscillator as reference clock
- Windowed watchdog
- Program flow control monitor with 16-bit pseudorandom key generation

The SWT module is replicated for each processor.

1.5.14 Fault collection and control unit (FCCU)

The FCCU provides an independent fault reporting mechanism even if the CPU is exhibiting unstable behaviors. The FCCU module has the following features:

- Redundant collection of hardware checker results
- Redundant collection of error information and latch of faults from critical modules on the device
- Collection of self-test results
- Configurable and graded fault control
 - Internal reactions (no internal reaction, IRQ)
 - External reaction (failure is reported to the external/surrounding system via configurable output pins)

1.5.15 System integration unit (SIUL)

The SPC56xP54x/SPC56xP60x SIUL controls MCU pad configuration, external interrupts, general purpose I/O (GPIO) pin configuration, and internal peripheral multiplexing.

The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block provides uniform and discrete input/output control of the I/O pins of the MCU.

The SIUL provides the following features:

- Centralized general purpose input output (GPIO) control of input/output pins and analog input-only pads (package dependent)
- All GPIO pins can be independently configured to support pull-up, pull down, or no pull
- Reading and writing to GPIO supported both as individual pins and 16-bit wide ports
- All peripheral pins (except ADC channels) can be alternatively configured as both general purpose input or output pins
- ADC channels support alternative configuration as general purpose inputs
- Direct readback of the pin value is supported on all pins through the SIU
- Configurable digital input filter that can be applied to some general purpose input pins for noise elimination
 - Up to 4 internal functions can be multiplexed onto one pin

1.5.16 Boot and censorship

Different booting modes are available in the SPC56xP54x/SPC56xP60x:

- From internal flash memory
- Via a serial link

The default booting scheme is the one which uses the internal flash memory (an internal pull-down is used to select this mode). The alternate option allows the user to boot via FlexCAN or LINFlex (using the boot assist module software).

A censorship scheme is provided to protect the contents of the flash memory and offer increased security for the entire device.

A password mechanism is designed to grant the legitimate user access to the non-volatile memory.

1.5.16.1 Boot assist module (BAM)

The BAM is a block of read-only one-time programmed memory and is identical for all SPC56xP54x/SPC56xP60x devices that are based on the e200z0h core. The BAM program is executed every time the device is powered on if the alternate boot mode has been selected by the user.

The BAM provides the following features:

- Serial bootloading via FlexCAN or LINFlex.
- BAM can accept a password via the used serial communication channel to grant the legitimate user access to the non-volatile memory.

1.5.17 Error correction status module (ECSM)

The ECSM on this device features the following:

- Platform configuration and revision
- ECC error reporting for flash memory and SRAM
- ECC error injection for SRAM

The ECSM module is replicated for each processor.

1.5.18 FlexCAN

The FlexCAN module is a communication controller implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to be used primarily as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the EMI environment of a vehicle, cost-effectiveness and required bandwidth. FlexCAN module contains 32 message buffers.

The FlexCAN module provides the following features:

- Full implementation of the CAN protocol specification, Version 2.0B
 - Standard data and remote frames
 - Extended data and remote frames
 - 0 to 8 bytes data length
 - Programmable bit rate as fast as 1 Mbit/s
- 32 message buffers of 0 to 8 bytes data length
- Each message buffer configurable as Rx or Tx, all supporting standard and extended messages
- Programmable loop-back mode supporting self-test operation
- 3 programmable mask registers

- Programmable transmit-first scheme: lowest ID or lowest buffer number
- Time stamp based on 16-bit free-running timer
- Global network time, synchronized by a specific message
- Maskable interrupts
- Independent of the transmission medium (an external transceiver is assumed)
- High immunity to EMI
- Short latency time due to an arbitration scheme for high-priority messages
- Transmit features
 - Supports configuration of multiple mailboxes to form message queues of scalable depth
 - Arbitration scheme according to message ID or message buffer number
 - Internal arbitration to guarantee no inner or outer priority inversion
 - Transmit abort procedure and notification
- Receive features
 - Individual programmable filters for each mailbox
 - 8 mailboxes configurable as a six-entry receive FIFO
 - 8 programmable acceptance filters for receive FIFO
- Programmable clock source
 - System clock
 - Direct oscillator clock to avoid PLL jitter

1.5.19 Safety port (FlexCAN)

The SPC56xP54x/SPC56xP60x MCU has a second CAN controller synthesized to run at high bit rates to be used as a safety port. The CAN module of the safety port provides the following features:

- Identical to the FlexCAN module
- Bit rate as fast as 7.5 Mb at 60 MHz CPU clock using direct connection between CAN modules (no physical transceiver required)
- 32 Message buffers of 0 to 8 bytes data length
- Can be used as a third independent CAN module

1.5.20 FlexRay

The FlexRay module provides the following features:

- Full implementation of FlexRay Protocol Specification 2.1
- 64 configurable message buffers can be handled
- Dual channel or single channel mode of operation, each as fast as 10 Mbit/s data rate
- Message buffers configurable as Tx, Rx or RxFIFO
- Message buffer size configurable
- Message filtering for all message buffers based on FrameID, cycle count and message ID
- Programmable acceptance filters for RxFIFO message buffers

1.5.21 Serial communication interface module (LINFlex)

The LINFlex on the SPC56xP54x/SPC56xP60x features the following:

- Supports LIN Master mode (on both modules), LIN Slave mode (on one module) and UART mode
- LIN state machine compliant to LIN1.3, 2.0, and 2.1 Specifications
- Handles LIN frame transmission and reception without CPU intervention
- LIN features
 - Autonomous LIN frame handling
 - Message buffer to store Identifier and up to 8 data bytes
 - Supports message length as long as 64 bytes
 - Detection and flagging of LIN errors: Sync field; Delimiter; ID parity; Bit; Framing; Checksum and Time-out errors
 - Classic or extended checksum calculation
 - Configurable Break duration as long as 36-bit times
 - Programmable Baud rate prescalers (13-bit mantissa, 4-bit fractional)
 - Diagnostic features: Loop back; Self Test; LIN bus stuck dominant detection
 - Interrupt-driven operation with 16 interrupt sources
- LIN slave mode features
 - Autonomous LIN header handling
 - Autonomous LIN response handling
- UART mode
 - Full-duplex operation
 - Standard non return-to-zero (NRZ) mark/space format
 - Data buffers with 4-byte receive, 4-byte transmit
 - Configurable word length (8-bit or 9-bit words)
 - Error detection and flagging
 - Parity, Noise and Framing errors
 - Interrupt-driven operation with four interrupt sources
 - Separate transmitter and receiver CPU interrupt sources
 - 16-bit programmable baud-rate modulus counter and 16-bit fractional
 - 2 receiver wake-up methods

1.5.22 Deserial serial peripheral interface (DSPI)

The deserial serial peripheral interface (DSPI) module provides a synchronous serial interface for communication between the SPC56xP54x/SPC56xP60x MCU and external devices.

The DSPI modules provide these features:

- Full duplex, synchronous transfers
- Master or slave operation
- Programmable master bit rates
- Programmable clock polarity and phase
- End-of-transmission interrupt flag
- Programmable transfer baud rate
- Programmable data frames from 4 to 16 bits
- Up to 28 chip select lines available
 - 8 each on DSPI_0 and DSPI_1
 - 4 each on DSPI_2, DSPI_3, and DSPI_4
- 8 clock and transfer attributes registers
- Chip select strobe available as alternate function on one of the chip select pins for deglitching
- FIFOs for buffering up to 5 transfers on the transmit and receive side
- Queueing operation possible through use of the eDMA
- General purpose I/O functionality on pins when not used for SPI

1.5.23 eTimer

Two eTimer modules are provided, each with six 16-bit general purpose up/down timer/counter per module. The following features are implemented:

- Individual channel capability
 - Input capture trigger
 - Output compare
 - Double buffer (to capture rising edge and falling edge)
 - Separate prescaler for each counter
 - Selectable clock source
 - 0 % to 100% pulse measurement
 - Rotation direction flag (Quad decoder mode)
- Maximum count rate
 - Equals peripheral clock/2 — for external event counting
 - Equals peripheral clock — for internal clock counting
- Cascadeable counters
- Programmable count modulo
- Quadrature decode capabilities
- Counters can share available input pins
- Count once or repeatedly
- Preloadable counters
- Pins available as GPIO when timer functionality not in use

1.5.24 Analog-to-digital converter (ADC)

The ADC module provides the following features:

Analog part:

- 1 on-chip analog-to-digital converter
- 10-bit AD resolution
- 1 sample and hold unit per ADC
- Conversion time, including sampling time, less than 1 μ s (at full precision)
- Typical sampling time is 150 ns min. (at full precision)
- Differential non-linearity error (DNL) ± 1 LSB
- Integral non-linearity error (INL) ± 1.5 LSB
- Total unadjusted error (TUE) < 3 LSB
- Single-ended input signal range from 0 to 3.3 V / 5.0 V
- ADC and its reference can be supplied with a voltage independent from V_{DDIO}
- ADC supply can be equal or higher than V_{DDIO}
- ADC supply and the ADC reference are not independent from each other (they are internally bonded to the same pad)
- Sample times of 2 (default), 8, 64, or 128 ADC clock cycles

Digital part:

- 27 input channels (26 + 1 internally connected)
- 4 analog watchdogs to compare ADC results against predefined levels (low, high, range) before results are stored
- 2 operating modes: Normal mode and CTU control mode
- Normal mode features
 - Register-based interface with the CPU: control register, status register, 1 result register per channel
 - ADC state machine managing 3 request flows: regular command, hardware injected command, and software injected command
 - Selectable priority between software and hardware injected commands
 - DMA compatible interface
- CTU control mode features
 - Triggered mode only
 - 4 independent result queues (2 \times 16 entries, 2 \times 4 entries)
 - Result alignment circuitry (left justified; right justified)
 - 32-bit read mode allows to have channel ID on one of the 16-bit part
 - DMA compatible interfaces

1.5.25 Cross triggering unit (CTU)

The Cross Triggering Unit (CTU) allows automatic generation of ADC conversion requests on user selected conditions with minimized CPU load for dynamic configuration.

It implements the following features:

- Double buffered trigger generation unit with up to eight independent triggers generated from external triggers
- Trigger generation unit configurable in sequential mode or in triggered mode
- Each Trigger can be appropriately delayed to compensate the delay of external low pass filter
- Double buffered global trigger unit allowing eTimer synchronization and/or ADC command generation
- Double buffered ADC command list pointers to minimize ADC-trigger unit update
- Double buffered ADC conversion command list with up to 24 ADC commands
- Each trigger has the capability to generate consecutive commands
- ADC conversion command allows to control ADC channel from each ADC, single or synchronous sampling, independent result queue selection

1.5.26 Cyclic redundancy check (CRC)

- 3 contexts for the concurrent CRC computation
- Separate CRC engine for each context
- Zero-wait states during the CRC computation (pipeline scheme)
- 3 hard-wired polynomials (CRC-8 VDA CAN, CRC-32 Ethernet and CRC-16-CCITT)
- Support for byte/half-word/word width of the input data stream
- Support for expected and actual CRC comparison

1.5.27 Nexus development interface (NDI)

The NDI block provides real-time development support capabilities for the SPC56xP54x/SPC56xP60x Power Architecture based MCU in compliance with the IEEE-ISTO 5001-2003 standard. This development support is supplied for MCUs without requiring external address and data pins for internal visibility. The NDI block is an integration of several individual Nexus blocks that are selected to provide the development support interface for this device. The NDI block interfaces to the host processor and internal buses to provide development support as per the IEEE-ISTO 5001-2003 Class 2+ standard. The development support provided includes access to the MCU's internal memory map and access to the processor's internal registers during run time.

The Nexus Interface provides the following features:

- Configured via the IEEE 1149.1
- All Nexus port pins operate at V_{DDIO} (no dedicated power supply)
- Nexus 2+ features supported
 - Static debug
 - Watchpoint messaging
 - Ownership trace messaging
 - Program trace messaging
 - Real time read/write of any internally memory mapped resources through JTAG pins
 - Overrun control, which selects whether to stall before Nexus overruns or keep executing and allow overwrite of information